Linked eigenvalue problems for the p-Laplacian

1994 ◽  
Vol 124 (5) ◽  
pp. 1023-1036
Author(s):  
P. A. Binding ◽  
Y. X. Huang

Linked equations of the formare studied on a bounded smooth domain in RN for λ ∈ R2. Existence and uniqueness of solutions are discussed for fi homogeneous of order p – 1 in ui, generalising the ‘Klein Oscillation Theorem’ when p = 2, N = 1. Bifurcation from the principal eigenvalue is also considered for nonhomogeneous perturbations fi of order greater than p – 1.

Author(s):  
Craig Cowan

We are interested in non-negative non-trivial solutions ofwhere 1 < p and Ω is a bounded smooth domain in ℝN with 3 ⩽ N ⩽ 9. We show that given a non-negative integer M there is some large p(M,Ω) such that the only non-negative solution u, of Morse index at most M, is u = 0.


2017 ◽  
Vol 96 (1) ◽  
pp. 98-109 ◽  
Author(s):  
MARCELO F. FURTADO ◽  
HENRIQUE R. ZANATA

We prove the existence of infinitely many solutions $u\in W_{0}^{1,2}(\unicode[STIX]{x1D6FA})$ for the Kirchhoff equation $$\begin{eqnarray}\displaystyle -\biggl(\unicode[STIX]{x1D6FC}+\unicode[STIX]{x1D6FD}\int _{\unicode[STIX]{x1D6FA}}|\unicode[STIX]{x1D6FB}u|^{2}\,dx\biggr)\unicode[STIX]{x1D6E5}u=a(x)|u|^{q-1}u+\unicode[STIX]{x1D707}f(x,u)\quad \text{in }\unicode[STIX]{x1D6FA}, & & \displaystyle \nonumber\end{eqnarray}$$ where $\unicode[STIX]{x1D6FA}\subset \mathbb{R}^{N}$ is a bounded smooth domain, $a(x)$ is a (possibly) sign-changing potential, $0<q<1$, $\unicode[STIX]{x1D6FC}>0$, $\unicode[STIX]{x1D6FD}\geq 0$, $\unicode[STIX]{x1D707}>0$ and the function $f$ has arbitrary growth at infinity. In the proof, we apply variational methods together with a truncation argument.


Author(s):  
Zongming Guo ◽  
Zhongyuan Liu

We continue to study the nonlinear fourth-order problem TΔu – DΔ2u = λ/(L + u)2, –L < u < 0 in Ω, u = 0, Δu = 0 on ∂Ω, where Ω ⊂ ℝN is a bounded smooth domain and λ > 0 is a parameter. When N = 2 and Ω is a convex domain, we know that there is λc > 0 such that for λ ∊ (0, λc) the problem possesses at least two regular solutions. We will see that the convexity assumption on Ω can be removed, i.e. the main results are still true for a general bounded smooth domain Ω. The main technique in the proofs of this paper is the blow-up argument, and the main difficulty is the analysis of touch-down behaviour.


2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Ignacio Guerra

<p style='text-indent:20px;'>We consider the following semilinear problem with a gradient term in the nonlinearity</p><p style='text-indent:20px;'><disp-formula> <label/> <tex-math id="FE1"> \begin{document}$ \begin{align*} -\Delta u = \lambda \frac{(1+|\nabla u|^q)}{(1-u)^p}\quad\text{in}\quad\Omega,\quad u&gt;0\quad \text{in}\quad \Omega, \quad u = 0\quad\text{on}\quad \partial \Omega. \end{align*} $\end{document} </tex-math></disp-formula></p><p style='text-indent:20px;'>where <inline-formula><tex-math id="M1">\begin{document}$ \lambda,p,q&gt;0 $\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id="M2">\begin{document}$ \Omega $\end{document}</tex-math></inline-formula> be a bounded, smooth domain in <inline-formula><tex-math id="M3">\begin{document}$ {\mathbb R}^N $\end{document}</tex-math></inline-formula>. We prove that when <inline-formula><tex-math id="M4">\begin{document}$ \Omega $\end{document}</tex-math></inline-formula> is a unit ball and <inline-formula><tex-math id="M5">\begin{document}$ p = 1 $\end{document}</tex-math></inline-formula> for <inline-formula><tex-math id="M6">\begin{document}$ q\in (0,q^*(N)) $\end{document}</tex-math></inline-formula> with <inline-formula><tex-math id="M7">\begin{document}$ q^*(N)\in (1,2) $\end{document}</tex-math></inline-formula>, we have infinitely many radial solutions for <inline-formula><tex-math id="M8">\begin{document}$ 2\leq N&lt;2\frac{6-q+2\sqrt{8-2q}}{(2-q)^2}+1 $\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id="M9">\begin{document}$ \lambda = \tilde \lambda $\end{document}</tex-math></inline-formula>. On the other hand, for <inline-formula><tex-math id="M10">\begin{document}$ N&gt;2\frac{6-q+2\sqrt{8-2q}}{(2-q)^2}+1 $\end{document}</tex-math></inline-formula> there exists a unique radial solution for <inline-formula><tex-math id="M11">\begin{document}$ 0&lt;\lambda&lt;\tilde \lambda $\end{document}</tex-math></inline-formula>.</p>


Author(s):  
Zhijun Zhang

This paper is mainly concerned with the global asymptotic behaviour of the unique solution to a class of singular Dirichlet problems − Δu = b(x)g(u), u > 0, x ∈ Ω, u|∂Ω = 0, where Ω is a bounded smooth domain in ℝ n , g ∈ C1(0, ∞) is positive and decreasing in (0, ∞) with $\lim _{s\rightarrow 0^+}g(s)=\infty$ , b ∈ Cα(Ω) for some α ∈ (0, 1), which is positive in Ω, but may vanish or blow up on the boundary properly. Moreover, we reveal the asymptotic behaviour of such a solution when the parameters on b tend to the corresponding critical values.


2002 ◽  
Vol 04 (03) ◽  
pp. 409-434 ◽  
Author(s):  
ADIMURTHI

In this article, we have determined the remainder term for Hardy–Sobolev inequality in H1(Ω) for Ω a bounded smooth domain and studied the existence, non existence and blow up of first eigen value and eigen function for the corresponding Hardy–Sobolev operator with Neumann boundary condition.


2017 ◽  
Vol 17 (1) ◽  
Author(s):  
Mónica Clapp ◽  
Filomena Pacella

AbstractWe establish the existence of nodal solutions to the supercritical problemin a symmetric bounded smooth domain Ω of


Author(s):  
Zongming Guo

The structure of positive boundary blow-up solutions to semilinear problems of the form −Δu = λf(u) in Ω, u = ∞ on ∂Ω, Ω ⊂ RN a bounded smooth domain, is studied for a class of nonlinearities f ∈ C1 ([0, ∞)\{z2}) satisfying f (0) = f(z1) = f (z2) = 0 with 0 < z1 < z2, f < 0 in (0, z1)∪(z2, ∞), f > 0 in (z1, z2). Two positive boundary-layer solutions and infinitely many positive spike-layer solutions are obtained for λ sufficiently large.


2013 ◽  
Vol 2013 ◽  
pp. 1-9
Author(s):  
Yujuan Jiao ◽  
Yanli Wang

We are concerned with the following modified nonlinear Schrödinger system:-Δu+u-(1/2)uΔ(u2)=(2α/(α+β))|u|α-2|v|βu,  x∈Ω,  -Δv+v-(1/2)vΔ(v2)=(2β/(α+β))|u|α|v|β-2v,  x∈Ω,  u=0,  v=0,  x∈∂Ω, whereα>2,  β>2,  α+β<2·2*,  2*=2N/(N-2)is the critical Sobolev exponent, andΩ⊂ℝN  (N≥3)is a bounded smooth domain. By using the perturbation method, we establish the existence of both positive and negative solutions for this system.


Sign in / Sign up

Export Citation Format

Share Document