scholarly journals Treatment of Parkinson’s disease with agents other than Levodopa and Dopamine Agonists: controversies and new approaches

Author(s):  
Anthony E. Lang

ABSTRACTParkinson’s disease is associated with a variety of neurotransmitter disturbances which may be further altered by its treatment with dopamine agonists. Based on this information a wide range of pharmacological approaches have been used in search of newer treatment alternatives and in hopes of reducing complications of long-term levodopa use. This paper reviews the various therapies which have had some success in the management of Parkinson’s disease, other than levodopa and dopamine agonists. Special emphasis is placed on the many unresolved questions and controversies that exist in this area of neuropharmacology.

2021 ◽  
pp. 1-5
Author(s):  
Leonard Sacks ◽  
Elizabeth Kunkoski

Digital health technology (DHT), including wearable and environmental sensors, video cameras and other electronic tools, has provided new opportunities for the measurement of movement and functionality in Parkinson’s disease. Compared to current standards for evaluation of the disease (MDS-UPDRS), DHT may offer new possibilities for more frequent objective measurements of the duration, severity and frequency of disease manifestations over time, that may provide more information than periodic clinic visits. However, DHT measurement are only scientifically and medically useful if they are accurate, reliable and clinically meaningful. Verification and validation, also known as analytical validation and clinical validation, of DHT performance is important to ensure the accuracy and precision of measurements, and the specificity of findings. Given the wide range of clinical manifestations associated with Parkinson’s disease and the many tools and metrics to assess them, the challenge is to identify those that may represent a standard for use in clinical trials, and to confirm when digital measurements succeed or fall short of capturing meaningful benefits during drug development.


1997 ◽  
Vol 31 (10) ◽  
pp. 1205-1217 ◽  
Author(s):  
Mildred D Gottwald ◽  
Jacquelyn L Bainbridge ◽  
Glenna A Dowling ◽  
Michael J Aminoff ◽  
Brian K Alldredge

OBJECTIVE: To summarize the development, pharmacology, pharmacokinetics, efficacy, and safety of five investigational antiparkinsonian drugs that are in or have recently completed Phase III trials: three dopamine agonists, pramipexole, ropinirole, and cabergoline; and two catechol- O-methyltransferase (COMT) inhibitors, entacapone and tolcapone. The pathophysiology and the role of dopamine in Parkinson's disease are also reviewed. DATA SOURCES: A MEDLINE search of relevant English-language literature, clinical studies, abstracts, and review articles pertaining to Parkinson's disease was conducted. Manual searches of 1996/1997 meeting abstracts published by the American Academy of Neurology and the Movement Disorders Society were also performed. Manufacturers provided unpublished Phase III trial efficacy and pharmacokinetic data. STUDY SELECTION AND DATA EXTRACTION: Clinical trial investigations selected for inclusion were limited to human subjects. Interim analyses after 6 months for long-term clinical trial studies in progress were included. Pharmacokinetic data from animals were cited if human data were unavailable. Statistical analyses for all studies were evaluated. DATA SYNTHESIS: By selectively targeting D2 receptors, the newer dopamine agonists (i.e., cabergoline, pramipexole, ropinirole) may delay the introduction of levodopa and thus the occurrence of levodopa-induced dyskinesias. In addition, they are efficacious as adjunctive therapies in patients with advanced Parkinson's disease. Unlike the currently available dopamine agonists, pramipexole and ropinirole are non-ergot derivatives and do not cause skin inflammation, paresthesias, pulmonary infiltrates, or pleural effusion. The COMT inhibitors, tolcapone and entacapone, improve the pharmacokinetics of levodopa by preventing its peripheral catabolism and increasing the concentration of brain dopamine; thus, these agents may reduce the incidence of “wearing-off ' effects associated with the short half-life of levodopa and the progression of Parkinson's disease. CONCLUSIONS: Interim 6-month analyses of pramipexole, ropinirole, and cabergoline for symptomatic treatment of early Parkinson's disease have shown these drugs to be efficacious and relatively well-tolerated when used as monotherapy. Their role in delaying the development of motor fluctuations and delaying the addition of levodopa is the subject of long-term clinical studies. In advanced stages of Parkinson's disease, these medications were also efficacious; however, the main adverse effects included dyskinesias, somnolence, and hallucinations. The COMT inhibitors, entacapone and tolcapone, have also demonstrated efficacy in improving on-time in patients with stable disease. Tolcapone has also demonstrated efficacy in patients with motor fluctuations. Both drugs are relatively well-tolerated, with the exception of dyskinesias that require reduction of the levodopa dosage and occasional diarrhea.


Author(s):  
Pierre J. Blanchet

While dopamine agonists are still traditionally used as adjunct medications to improve performance and smooth out motor response complications in advanced levodopa-treated Parkinson's disease, they are increasingly used in monotherapy or early in combination with levodopa particularly in patients under 65 years of age. Long-term studies using bromocriptine showed efficacy in lowering the cumulative levodopa dose and reducing the early incidence of levodopa-related motor response complications. New dopamine agonists have recently shown efficacy as adjunct medications in short-term trials. While we now have more options to fit our individual patients' needs and tolerance, it is important to view the new agonists in the light of the results obtained with ergot derivatives. In this article, the rationale for use and efficacy profile of the ergolines are briefly reviewed.


2010 ◽  
Vol 5 (2) ◽  
pp. 34 ◽  
Author(s):  
Hanna S Lindgren ◽  
M Angela Cenci ◽  
Emma L Lane ◽  
◽  
◽  
...  

The degeneration of nigrostriatal dopaminergic neurons in Parkinson’s disease gives rise to tremor and slowness of movement, cardinal motor symptoms of the disease that can be alleviated by the dopamine precursor L-DOPA. Despite this, long-term L-DOPA treatment is hampered by the development of abnormal involuntary movements, i.e. dyskinesia, in the majority of patients. The pathophysiology of dyskinesia is complex and multifactorial, but excessive swings in extracellular dopamine causing aberrant plasticity in dopaminoceptive neurons are attributed a primary role. To date there are few effective treatment alternatives for patients with Parkinson’s disease experiencing dyskinesia, representing an unmet therapeutic need in the treatment strategy of the disease. This article reviews recent findings from both clinical and pre-clinical studies and their impact on the search for novel therapeutic approaches to levodopa-induced dyskinesia.


Sign in / Sign up

Export Citation Format

Share Document