scholarly journals Cerebellar Dysfunction of Movement and Perception

Author(s):  
H.C. Diener ◽  
J. Hore ◽  
R. Ivry ◽  
J. Dichgans

ABSTRACT:This review describes some characteristics of patients with cerebellar lesions, including limb movements, changes in motor planning and disturbances in time-dependent perception. The delay in movement initiation can be explained by a delay in onset of movement-related discharge of neurons in motor cortex. Disorders of movement termination (hypermetria) are accompanied by asymmetric velocity profiles and by prolonged agonist and delayed antagonist EMG activity necessary to brake the movement. During complex movements in three-dimensional space, the cerebellum contributes to timing between single components of a movement, scales the size of muscular action, and coordinates the sequence of agonists and antagonists. The basic structure of motor programs is not generated exclusively within the cerebellum and patients with cerebellar lesions can use precuing information to improve their motor performance. Time-dependent perception in the auditory and visual domains are disturbed in patients with cerebellar lesions.

2021 ◽  
Author(s):  
Kaushal R Purohit ◽  
Rajendrasinh H PARMAR ◽  
Ajay Kumar Rai

Abstract Using the Qiang-Dong proper quantization rule (PQR) and the supersymmetric quantum mechanics approach, we obtained the eigenspectrum of the energy and momentum for time independent and time dependent Hulthen-screened cosine Kratzer potentials. For the suggested time independent Hulthen-screened cosine Kratzer potential, we solved the Schrodinger equation in D dimensions (HSCKP). The Feinberg-Horodecki equation for time-dependent Hulthen-screened cosine Kratzer potential was also solved (tHSCKP). To address the inverse square term in the time independent and time dependent equations, we employed the Greene-Aldrich approximation approach. We were able to extract time independent and time dependent potentials, as well as their accompanying energy and momentum spectra. In three-dimensional space, we estimated the rotational vibrational (RV) energy spectrum for many homodimers ($H_2, I_2, O_2$) and heterodimers ($MnH, ScN, LiH, HCl$). We also used the recently introduced formula approach to obtain the relevant eigen function. We also calculated momentum spectra for the dimers $MnH$ and $ScN$. The method is compared to prior methodologies for accuracy and validity using numerical data for heterodimer $LiH, HCl$ and homodimer $I_2, O_2,H_2$. The calculated energy and momentum spectra are tabulated and analysed.


1997 ◽  
Vol 84 (1) ◽  
pp. 176-178
Author(s):  
Frank O'Brien

The author's population density index ( PDI) model is extended to three-dimensional distributions. A derived formula is presented that allows for the calculation of the lower and upper bounds of density in three-dimensional space for any finite lattice.


2019 ◽  
Author(s):  
Jumpei Morimoto ◽  
Yasuhiro Fukuda ◽  
Takumu Watanabe ◽  
Daisuke Kuroda ◽  
Kouhei Tsumoto ◽  
...  

<div> <div> <div> <p>“Peptoids” was proposed, over decades ago, as a term describing analogs of peptides that exhibit better physicochemical and pharmacokinetic properties than peptides. Oligo-(N-substituted glycines) (oligo-NSG) was previously proposed as a peptoid due to its high proteolytic resistance and membrane permeability. However, oligo-NSG is conformationally flexible and is difficult to achieve a defined shape in water. This conformational flexibility is severely limiting biological application of oligo-NSG. Here, we propose oligo-(N-substituted alanines) (oligo-NSA) as a new peptoid that forms a defined shape in water. A synthetic method established in this study enabled the first isolation and conformational study of optically pure oligo-NSA. Computational simulations, crystallographic studies and spectroscopic analysis demonstrated the well-defined extended shape of oligo-NSA realized by backbone steric effects. The new class of peptoid achieves the constrained conformation without any assistance of N-substituents and serves as an ideal scaffold for displaying functional groups in well-defined three-dimensional space, which leads to effective biomolecular recognition. </p> </div> </div> </div>


Sign in / Sign up

Export Citation Format

Share Document