scholarly journals On the Mellin transform of a product of hypergeometric functions

Author(s):  
Allen R. Miller ◽  
H. M. Srivastava

AbstractWe obtain representations for the Mellin transform of the product of generalized hypergeometric functions0F1[−a2x2]1F2[−b2x2]fora, b > 0. The later transform is a generalization of the discontinuous integral of Weber and Schafheitlin; in addition to reducing to other known integrals (for example, integrals involving products of powers, Bessel and Lommel functions), it contains numerous integrals of interest that are not readily available in the mathematical literature. As a by-product of the present investigation, we deduce the second fundamental relation for3F2[1]. Furthermore, we give the sine and cosine transforms of1F2[−b2x2].

Mathematics ◽  
2021 ◽  
Vol 9 (24) ◽  
pp. 3255
Author(s):  
Alexander Apelblat ◽  
Juan Luis González-Santander

Integral Mittag-Leffler, Whittaker and Wright functions with integrands similar to those which already exist in mathematical literature are introduced for the first time. For particular values of parameters, they can be presented in closed-form. In most reported cases, these new integral functions are expressed as generalized hypergeometric functions but also in terms of elementary and special functions. The behavior of some of the new integral functions is presented in graphical form. By using the MATHEMATICA program to obtain infinite sums that define the Mittag-Leffler, Whittaker, and Wright functions and also their corresponding integral functions, these functions and many new Laplace transforms of them are also reported in the Appendices for integral and fractional values of parameters.


Symmetry ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 1102
Author(s):  
Yashoverdhan Vyas ◽  
Hari M. Srivastava ◽  
Shivani Pathak ◽  
Kalpana Fatawat

This paper provides three classes of q-summation formulas in the form of general contiguous extensions of the first q-Kummer summation theorem. Their derivations are presented by using three methods, which are along the lines of the three types of well-known proofs of the q-Kummer summation theorem with a key role of the q-binomial theorem. In addition to the q-binomial theorem, the first proof makes use of Thomae’s q-integral representation and the second proof needs Heine’s transformation. Whereas the third proof utilizes only the q-binomial theorem. Subsequently, the applications of these summation formulas in obtaining the general contiguous extensions of the second and the third q-Kummer summation theorems are also presented. Furthermore, the investigated results are specialized to give many of the known as well as presumably new q-summation theorems, which are contiguous to the three q-Kummer summation theorems. This work is motivated by the observation that the basic (or q-) series and basic (or q-) polynomials, especially the basic (or q-) gamma and q-hypergeometric functions and basic (or q-) hypergeometric polynomials, are applicable particularly in several diverse areas including Number Theory, Theory of Partitions and Combinatorial Analysis as well as in the study of Combinatorial Generating Functions. Just as it is known in the theory of the Gauss, Kummer (or confluent), Clausen and the generalized hypergeometric functions, the parameters in the corresponding basic or quantum (or q-) hypergeometric functions are symmetric in the sense that they remain invariant when the order of the p numerator parameters or when the order of the q denominator parameters is arbitrarily changed. A case has therefore been made for the symmetry possessed not only by hypergeometric functions and basic or quantum (or q-) hypergeometric functions, which are studied in this paper, but also by the symmetric quantum calculus itself.


2021 ◽  
Vol 33 (1) ◽  
pp. 1-22
Author(s):  
D. Artamonov

The Clebsh–Gordan coefficients for the Lie algebra g l 3 \mathfrak {gl}_3 in the Gelfand–Tsetlin base are calculated. In contrast to previous papers, the result is given as an explicit formula. To obtain the result, a realization of a representation in the space of functions on the group G L 3 GL_3 is used. The keystone fact that allows one to carry the calculation of Clebsh–Gordan coefficients is the theorem that says that functions corresponding to the Gelfand–Tsetlin base vectors can be expressed in terms of generalized hypergeometric functions.


1988 ◽  
Vol 11 (1) ◽  
pp. 167-175 ◽  
Author(s):  
R. S. Dahiya ◽  
I. H. Jowhar

The object of this paper is to obtain new operational relations between the original and the image functions that involve generalized hypergeometricG-functions.


Sign in / Sign up

Export Citation Format

Share Document