Real-time Terrain Matching Based on 3D Zernike Moments

2018 ◽  
Vol 71 (6) ◽  
pp. 1441-1459 ◽  
Author(s):  
Kedong Wang ◽  
Tongqian Zhu ◽  
Jinling Wang

Since the descriptors based on Three-Dimensional (3D) Zernike moments are robust to geometric transformations and noise, they have been proposed for terrain matching. However, terrain matching algorithms based on 3D Zernike Moments (3DZMs) are often difficult to implement in practice since they are computationally intensive. This paper presents a more efficient real-time terrain matching algorithm based on 3DZMs for land applications. Two efficient methods based on coordinate transformation and symmetry are proposed to compute the geometric moments. The impact of the sample difference on the matching result due to heading angle is investigated to prove the feasibility of using a circular template. Consequently, the terrain feature vectors of the reference map can be computed off-line with the circular template to significantly reduce on-line computation. Numerical experiments on a real digital elevation model demonstrate that the proposed algorithm is robust to the heading angle and can be implemented for real-time terrain matching operations.

Author(s):  
В.Ю. Семенова ◽  
Д.А. Альбаев

В статье рассматривается определение нелинейных сил, возникающих при продольной качке судов (продольно-горизонтальной, вертикальной и килевой) на основании трехмерной потенциальной теории. Для нахождения нелинейных сил, требуется определение потенциалов второго порядка малости. Решение основано на методах малого параметра, интегральных уравнений и функций Грина для случая глубокой воды и ограниченной глубины (при H→∞). При определении потенциалов второго порядка учитываются нелинейные граничные условия на свободной поверхности жидкости и на смоченной поверхности судна. На основании изложенного метода разработаны две программы, использующие разные функции Грина.. Приводятся результаты расчетов сил и моментов для двух разных судов. Показано практически полное согласование результатов при использовании различных функций Грина. Приведено сравнение с результатами по двумерной теории. Проведены расчеты нелинейных сил на различных курсовых углах. Показано влияние курсового угла на отдельные составляющие нелинейных сил. Показано значительное влияние потенциалов второго порядка в образовании нелинейных сил, возникающих при всех видах продольных колебаний. The article deals with the definition of nonlinear forces arising in the surge, heave and pitch motions of the ships on the basis of three-dimensional potential theory. To determine them, it is necessary to calculate the potentials of the second order of smallness. The presented solution in national practice is new. The solution of the problem is carried out on the basis of small parameter methods, integral equations and Green’s functions: for an infinitely deep fluid and a fluid of limited depth (when H→∞).During the determination of the second order potentials, nonlinear boundary conditions on the free surface of the liquid and on the wetted surface of the ship are taken into account On the basis of methods two programs were developed, using different Green functions. The results of calculations of the forces and moments for two different ships are presented. Good agreement between the results for different functions is shown. The calculations are presented in comparison with the calculations according to the two-dimensional theory. calculations were made for nonlinear forces at various heading angles. The impact of heading angle is shown.A significant influence of second-order potentials in the formation of nonlinear forces arising from all types of longitudinals motions is shown


2021 ◽  
Author(s):  
Nigel Mark Clegg ◽  
Ana Beatriz Domingues ◽  
Rosamary Ameneiro Paredes ◽  
Nicki Gardner ◽  
Vanessa Mendoza Barrón ◽  
...  

Abstract Ultra-deep azimuthal electromagnetic (EM) logging-while-drilling (LWD) tools are frequently used during landing operations for early detection of the reservoir top. This enables alterations to the well plan before the reservoir is penetrated. To date, this approach has relied on one-dimensional (1-D) inversions that accounts only for changes in resistivity above or below the wellbore. When geology is complex, resulting in lateral changes in resistivity, 3-D inversion of EM data is required to provide increased reservoir understanding. This paper presents a case study from offshore Brazil, targeting a turbidite deposit. A complex reservoir surface was expected, as defined by seismic data for the area. Although top structure rugosity and lateral position uncertainty had been incorporated into the prognosis, the impact of surface topography on inversion results while landing was not anticipated. During real-time operations, 1-D EM inversion was used along with correlation of shallow LWD data to map the reservoir top. It was clear the geology was more complicated than depicted by the 2-D geological model constructed from the 1-D inversion and that lateral changes in surface morphology may be occurring. Post well a 3-D inversion of the EM data revealed the 3-D geological structure. During the initial approach, the 1-D inversion indicated that relief of the reservoir top was more exaggerated than expected; the well intersected a sharp peak prior to approaching the target zone. The misfit on the 1-D inversion indicated there was potential for lateral variation in resistivity, influencing the 1-D results; lateral changes can produce artefacts that obscure the subsurface structure. This was confirmed after drilling with analysis of ultra-deep azimuthal resistivity images, indicating significant changes in resistivity to the left and right of the borehole. A 3-D EM inversion was run to depict these complex subsurface geometries. The 1-D inversion results were better understood post-drill with the 3-D inversion results, which show a high point in the reservoir top to the side of the wellbore that was drilled past, but not penetrated by, the well. This high-resistivity zone had a negative effect on the 1-D inversion results and made delineation of the reservoir top difficult. Understanding lateral variations in formation and fluid boundaries can improve well placement and reservoir understanding. This knowledge can impact landing scenarios and well placement within the reservoir. Three-dimensional inversion of ultra-deep azimuthal EM LWD data in real time will provide a clearer picture of the position of resistivity changes while drilling. This will enable decisions to be made that affect the azimuthal position of a well, as well as its vertical position during drilling, thereby facilitating optimal well placement, even in complex geological environments or for infill wells requiring precise well placement.


2012 ◽  
Vol 2012 ◽  
pp. 1-17 ◽  
Author(s):  
Khalid M. Hosny ◽  
Mohamed A. Hafez

An algorithm was proposed for very fast and low-complexity computation of three-dimensional Zernike moments. The 3D Zernike moments were expressed in terms of exact 3D geometric moments where the later are computed exactly through the mathematical integration of the monomial terms over the digital image/object voxels. A new symmetry-based method was proposed to compute 3D Zernike moments with 87% reduction in the computational complexity. A fast 1D cascade algorithm was also employed to add more complexity reduction. The comparison with existing methods was performed, where the numerical experiments and the complexity analysis ensured the efficiency of the proposed method especially with image and objects of large sizes.


Author(s):  
Ruxandra Calapod Ioana ◽  
Irina Bojoga ◽  
Duta Simona Gabriela ◽  
Ana-Maria Stancu ◽  
Amalia Arhire ◽  
...  

2019 ◽  
Vol 2019 ◽  
pp. 790-791
Author(s):  
Cunhyeong Ci ◽  
◽  
Hyo-Gyoo Kim ◽  
Seungbae Park ◽  
Heebok Lee
Keyword(s):  

2010 ◽  
Vol 151 (21) ◽  
pp. 854-863 ◽  
Author(s):  
Attila Nemes ◽  
Marcel L. Geleijnse ◽  
Osama I. I. Soliman ◽  
Wim B. Vletter ◽  
Jackie S. McGhie ◽  
...  

Jelenleg az echokardiográfia a legszéleskörűbben alkalmazott rutin noninvazív diagnosztikus eljárás, amelynek segítségével a mitralis billentyű morfológiája és funkciója jellemezhető. Ennek az összefoglaló jellegű közleménynek a célja az egyik legújabb echokardiográfiás fejlesztés, a transthoracalis real-time háromdimenziós echokardiográfia szerepének bemutatása a mitralis billentyű vizsgálatában.


Diabetes ◽  
2020 ◽  
Vol 69 (Supplement 1) ◽  
pp. 778-P
Author(s):  
ZIYU LIU ◽  
CHAOFAN WANG ◽  
XUEYING ZHENG ◽  
SIHUI LUO ◽  
DAIZHI YANG ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document