FMDV-RNA Polymerase - The Localization of an Enzyme and its Product by EM Immunocytochemistry and Autoradiometric Analysis

Author(s):  
J. Polatnick ◽  
S. H. Wool

Foot-and-mouth disease virus infected bovine kidney cell cultures were treated at intervals from 1-4 hours post-infection with 1% saponin and.05% glutaraldehyde for 30 min. The cells were then treated with guinea pig anti-polymerase sera for 60 min followed by ferritin-tagged rabbit antiguinea pig sera or Protein-A peroxidase. Diaminobenzidine in 0.01% H2O2 served as the peroxidase substrate. Cells were then post-fixed in 2% OSO4 and embedded through alcchols into Epon. in sane cases, cell fractions were also treated.

Author(s):  
S. H. Wool ◽  
J. Polatnick

The Golgi apparatus was isolated from infected baby hamster kidney cells by centrifugation through discontinuous sucrose gradients. Tritium-labeled protein samples were analyzed by polyacrylamide gel electrophoretic autoradiograms. Pulse-chase studies showed that the viral-induced RNA polymerase passed through the Golgi as infection progressed. Some viral coat proteins were also associated with the Golgi as were other as yet unidentified viral proteins (Fig. 1). Immune labeling of isolated and in situ Golgi confirmed the presence of viral RNA polymerase. The isolated (Fig. 2) and in situ Golgi were labeled with guinea pig antipolymerase antibody and ferritin-labeled goat anti-guinea pig sera to show the presence of viral RNA polymerase.Earlier work in this laboratory established that the RNA polymerase was bound to membranes of newly formed smooth vacuoles during infection with FMDV. The smaller protein on the gel in Fig. 1 (arrow) corresponds in size to VPg (a nonstructural protein bound to the 5' end of viral RNA) has also been shown to be membrane bound.


2014 ◽  
Vol 95 (5) ◽  
pp. 1104-1116 ◽  
Author(s):  
Amin S. Asfor ◽  
Sasmita Upadhyaya ◽  
Nick J. Knowles ◽  
Donald P. King ◽  
David J. Paton ◽  
...  

Five neutralizing antigenic sites have been described for serotype O foot-and-mouth disease viruses (FMDV) based on monoclonal antibody (mAb) escape mutant studies. However, a mutant virus selected to escape neutralization of mAb binding at all five sites was previously shown to confer complete cross-protection with the parental virus in guinea pig challenge studies, suggesting that amino acid residues outside the mAb binding sites contribute to antibody-mediated in vivo neutralization of FMDV. Comparison of the ability of bovine antisera to neutralize a panel of serotype O FMDV identified three novel putative sites at VP2-74, VP2-191 and VP3-85, where amino acid substitutions correlated with changes in sero-reactivity. The impact of these positions was tested using site-directed mutagenesis to effect substitutions at critical amino acid residues within an infectious copy of FMDV O1 Kaufbeuren (O1K). Recovered viruses containing additional mutations at VP2-74 and VP2-191 exhibited greater resistance to neutralization with both O1K guinea pig and O BFS bovine antisera than a virus that was engineered to include only mutations at the five known antigenic sites. The changes at VP2-74 and VP3-85 are adjacent to critical amino acids that define antigenic sites 2 and 4, respectively. However VP2-191 (17 Å away from VP2-72), located at the threefold axis and more distant from previously identified antigenic sites, exhibited the most profound effect. These findings extend our knowledge of the surface features of the FMDV capsid known to elicit neutralizing antibodies, and will improve our strategies for vaccine strain selection and rational vaccine design.


2005 ◽  
Vol 79 (12) ◽  
pp. 7698-7706 ◽  
Author(s):  
Arabinda Nayak ◽  
Ian G. Goodfellow ◽  
Graham J. Belsham

ABSTRACT The 5′ terminus of picornavirus genomic RNA is covalently linked to the virus-encoded peptide 3B (VPg). Foot-and-mouth disease virus (FMDV) is unique in encoding and using 3 distinct forms of this peptide. These peptides each act as primers for RNA synthesis by the virus-encoded RNA polymerase 3Dpol. To act as the primer for positive-strand RNA synthesis, the 3B peptides have to be uridylylated to form VPgpU(pU). For certain picornaviruses, it has been shown that this reaction is achieved by the 3Dpol in the presence of the 3CD precursor plus an internal RNA sequence termed a cis-acting replication element (cre). The FMDV cre has been identified previously to be within the 5′ untranslated region, whereas all other picornavirus cre structures are within the viral coding region. The requirements for the in vitro uridylylation of each of the FMDV 3B peptides has now been determined, and the role of the FMDV cre (also known as the 3B-uridylylation site, or bus) in this reaction has been analyzed. The poly(A) tail does not act as a significant template for FMDV 3B uridylylation.


Sign in / Sign up

Export Citation Format

Share Document