Golgi processed foot-and-mouth disease virus proteins

Author(s):  
S. H. Wool ◽  
J. Polatnick

The Golgi apparatus was isolated from infected baby hamster kidney cells by centrifugation through discontinuous sucrose gradients. Tritium-labeled protein samples were analyzed by polyacrylamide gel electrophoretic autoradiograms. Pulse-chase studies showed that the viral-induced RNA polymerase passed through the Golgi as infection progressed. Some viral coat proteins were also associated with the Golgi as were other as yet unidentified viral proteins (Fig. 1). Immune labeling of isolated and in situ Golgi confirmed the presence of viral RNA polymerase. The isolated (Fig. 2) and in situ Golgi were labeled with guinea pig antipolymerase antibody and ferritin-labeled goat anti-guinea pig sera to show the presence of viral RNA polymerase.Earlier work in this laboratory established that the RNA polymerase was bound to membranes of newly formed smooth vacuoles during infection with FMDV. The smaller protein on the gel in Fig. 1 (arrow) corresponds in size to VPg (a nonstructural protein bound to the 5' end of viral RNA) has also been shown to be membrane bound.

Molecules ◽  
2019 ◽  
Vol 24 (13) ◽  
pp. 2360 ◽  
Author(s):  
Sonia de Castro ◽  
Cristina Ferrer-Orta ◽  
Alberto Mills ◽  
Gloria Fernández-Cureses ◽  
Federico Gago ◽  
...  

Foot-and-mouth disease virus (FMDV) is an RNA virus belonging to the Picornaviridae family that contains three small viral proteins (VPgs), named VPg1, VPg2 and VPg3, linked to the 5′-end of the viral genome. These VPg proteins act as primers for RNA replication, which is initiated by the consecutive binding of two UMP molecules to the hydroxyl group of Tyr3 in VPg. This process, termed uridylylation, is catalyzed by the viral RNA-dependent RNA polymerase named 3Dpol. 5-Fluorouridine triphosphate (FUTP) is a potent competitive inhibitor of VPg uridylylation. Peptide analysis showed FUMP covalently linked to the Tyr3 of VPg. This fluorouridylylation prevents further incorporation of the second UMP residue. The molecular basis of how the incorporated FUMP blocks the incorporation of the second UMP is still unknown. To investigate the mechanism of inhibition of VPg uridylylation by FUMP, we have prepared a simplified 15-mer model of VPg1 containing FUMP and studied its x-ray crystal structure in complex with 3Dpol. Unfortunately, the fluorouridylylated VPg1 was disordered and not visible in the electron density maps; however, the structure of 3Dpol in the presence of VPg1-FUMP showed an 8 Å movement of the β9-α11 loop of the polymerase towards the active site cavity relative to the complex of 3Dpol with VPg1-UMP. The conformational rearrangement of this loop preceding the 3Dpol B motif seems to block the access of the template nucleotide to the catalytic cavity. This result may be useful in the design of new antivirals against not only FMDV but also other picornaviruses, since all members of this family require the uridylylation of their VPg proteins to initiate the viral RNA synthesis.


Author(s):  
J. Polatnick ◽  
S. H. Wool

Foot-and-mouth disease virus infected bovine kidney cell cultures were treated at intervals from 1-4 hours post-infection with 1% saponin and.05% glutaraldehyde for 30 min. The cells were then treated with guinea pig anti-polymerase sera for 60 min followed by ferritin-tagged rabbit antiguinea pig sera or Protein-A peroxidase. Diaminobenzidine in 0.01% H2O2 served as the peroxidase substrate. Cells were then post-fixed in 2% OSO4 and embedded through alcchols into Epon. in sane cases, cell fractions were also treated.


1969 ◽  
Vol 112 (3) ◽  
pp. 317-323 ◽  
Author(s):  
D. N. Black ◽  
F. Brown

The RNA-dependent RNA polymerase induced in baby-hamster kidney cells by infection with foot-and-mouth-disease virus can be detected as early as 60min. after infection, which is 60min. before viral RNA synthesis commences. The time at which the polymerase can first be detected coincides with the latest time at which actinomycin D (50μg./107 cells) or guanidine (1mg./107 cells) inhibits virus replication. However, by increasing the concentration of guanidine, viral replication can be inhibited later in the growth cycle, casting doubt on the validity of the hypothesis that guanidine acts specifically on the formation of the viral RNA polymerase.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Wenping Hu ◽  
Haixue Zheng ◽  
Qiuyan Li ◽  
Yuhang Wang ◽  
Xiangtao Liu ◽  
...  

AbstractFoot-and-mouth disease virus (FMDV) is one of the most important animal pathogens in the world. FMDV naturally infects swine, cattle, and other cloven-hoofed animals. FMD is not adequately controlled by vaccination. An alternative strategy is to develop swine that are genetically resistant to infection. Here, we generated FMDV-specific shRNA transgenic cells targeting either nonstructural protein 2B or polymerase 3D of FMDV. The shRNA-positive transgenic cells displayed significantly lower viral production than that of the control cells after infection with FMDV (P < 0.05). Twenty-three transgenic cloned swine (TGCS) and nine non-transgenic cloned swine (Non-TGCS) were produced by somatic cell nuclear transfer (SCNT). In the FMDV challenge study, one TGCS was completely protected, no clinical signs, no viremia and no viral RNA in the tissues, no non-structural antibody response, another one TGCS swine recovered after showing clinical signs for two days, whereas all of the normal control swine (NS) and Non-TGCS developed typical clinical signs, viremia and viral RNA was determined in the tissues, the non-structural antibody was determined, and one Non-TGCS swine died. The viral RNA load in the blood and tissues of the TGCS was reduced in both challenge doses. These results indicated that the TGCS displayed resistance to the FMDV infection. Immune cells, including CD3+, CD4+, CD8+, CD21+, and CD172+ cells, and the production of IFN-γ were analyzed, there were no significant differences observed between the TGCS and NS or Non-TGCS, suggesting that the FMDV resistance may be mainly derived from the RNAi-based antiviral pathway. Our work provides a foundation for a breeding approach to preventing infectious disease in swine.


2007 ◽  
Vol 14 (11) ◽  
pp. 1472-1482 ◽  
Author(s):  
Julie Perkins ◽  
Satya Parida ◽  
Alfonso Clavijo

ABSTRACT Liquid array technology has previously been used to show proof of principle of a multiplexed nonstructural protein serological assay to differentiate foot-and-mouth disease virus-infected and vaccinated animals. The current multiplexed assay consists of synthetically produced peptide signatures 3A, 3B, and 3D and the recombinant protein signature 3ABC in combination with four controls. To determine the diagnostic specificity of each signature in the multiplex, the assay was evaluated against a naive population (n = 104) and a vaccinated population (n = 94). Subsequently, the multiplexed assay was assessed by using a panel of bovine sera generated by the World Reference Laboratory for foot-and-mouth disease in Pirbright, United Kingdom. This serum panel has been used to assess the performance of other singleplex enzyme-linked immunosorbent assay (ELISA)-based nonstructural protein antibody assays. The 3ABC signature in the multiplexed assay showed performance comparable to that of a commercially available nonstructural protein 3ABC ELISA (Cedi test), and additional information pertaining to the relative diagnostic sensitivity of each signature in the multiplex was acquired in one experiment. The encouraging results of the evaluation of the multiplexed assay against a panel of diagnostically relevant samples promote further assay development and optimization to generate an assay for routine use in foot-and-mouth disease serological surveillance.


2018 ◽  
Vol 32 (12) ◽  
pp. 6706-6723 ◽  
Author(s):  
Huisheng Liu ◽  
Qiao Xue ◽  
Weijun Cao ◽  
Fan Yang ◽  
Linna Ma ◽  
...  

2014 ◽  
Vol 95 (5) ◽  
pp. 1104-1116 ◽  
Author(s):  
Amin S. Asfor ◽  
Sasmita Upadhyaya ◽  
Nick J. Knowles ◽  
Donald P. King ◽  
David J. Paton ◽  
...  

Five neutralizing antigenic sites have been described for serotype O foot-and-mouth disease viruses (FMDV) based on monoclonal antibody (mAb) escape mutant studies. However, a mutant virus selected to escape neutralization of mAb binding at all five sites was previously shown to confer complete cross-protection with the parental virus in guinea pig challenge studies, suggesting that amino acid residues outside the mAb binding sites contribute to antibody-mediated in vivo neutralization of FMDV. Comparison of the ability of bovine antisera to neutralize a panel of serotype O FMDV identified three novel putative sites at VP2-74, VP2-191 and VP3-85, where amino acid substitutions correlated with changes in sero-reactivity. The impact of these positions was tested using site-directed mutagenesis to effect substitutions at critical amino acid residues within an infectious copy of FMDV O1 Kaufbeuren (O1K). Recovered viruses containing additional mutations at VP2-74 and VP2-191 exhibited greater resistance to neutralization with both O1K guinea pig and O BFS bovine antisera than a virus that was engineered to include only mutations at the five known antigenic sites. The changes at VP2-74 and VP3-85 are adjacent to critical amino acids that define antigenic sites 2 and 4, respectively. However VP2-191 (17 Å away from VP2-72), located at the threefold axis and more distant from previously identified antigenic sites, exhibited the most profound effect. These findings extend our knowledge of the surface features of the FMDV capsid known to elicit neutralizing antibodies, and will improve our strategies for vaccine strain selection and rational vaccine design.


2005 ◽  
Vol 79 (12) ◽  
pp. 7698-7706 ◽  
Author(s):  
Arabinda Nayak ◽  
Ian G. Goodfellow ◽  
Graham J. Belsham

ABSTRACT The 5′ terminus of picornavirus genomic RNA is covalently linked to the virus-encoded peptide 3B (VPg). Foot-and-mouth disease virus (FMDV) is unique in encoding and using 3 distinct forms of this peptide. These peptides each act as primers for RNA synthesis by the virus-encoded RNA polymerase 3Dpol. To act as the primer for positive-strand RNA synthesis, the 3B peptides have to be uridylylated to form VPgpU(pU). For certain picornaviruses, it has been shown that this reaction is achieved by the 3Dpol in the presence of the 3CD precursor plus an internal RNA sequence termed a cis-acting replication element (cre). The FMDV cre has been identified previously to be within the 5′ untranslated region, whereas all other picornavirus cre structures are within the viral coding region. The requirements for the in vitro uridylylation of each of the FMDV 3B peptides has now been determined, and the role of the FMDV cre (also known as the 3B-uridylylation site, or bus) in this reaction has been analyzed. The poly(A) tail does not act as a significant template for FMDV 3B uridylylation.


Sign in / Sign up

Export Citation Format

Share Document