Development Program for a 500-kV High Resolution Microscope

Author(s):  
R. E. Worsham ◽  
J. E. Mann ◽  
E. G. Richardson ◽  
G. G. Slaughter ◽  
N. F. Ziegler

The goal of the development program for high resolution microscopy at Oak Ridge National Laboratory is a 100-500 kV instrument with a point-to-point resolution of at least 1Å. As reported previously, this microscope is intended for biological specimens to be observed at liquid helium temperature. This resolution is to be achieved principally by reduction of the primary spherical aberration for the objective lens with a quadrupole-octupole system of lenses.

Author(s):  
R. E. Worsham ◽  
W. W. Harris ◽  
T. A. Welton

In the latter part of 1967, a program began at the Oak Ridge National Laboratory for the development of high resolution microscopy. The immediate design goal is a point-to-point resolution of at least 1 Å, to allow superior delineation of organelle structures, as well to offer a possibility of atomic identification and location in complex biomolecules. The proposed techniques seem to offer in principle the possibility of resolution limited only by random thermal motion in the sample.Theoretical studies of both lens aberrations and image formation are being actively pursued. The aberration studies are aimed at design of a practical corrector for the primary spherical aberration, along lines first suggested by Archard. The image studies partially described elsewhere in these proceedings are aimed both at optimizing instrument performance and at the development of adequate methods for interpretation of high resolution phase contrast data.


Author(s):  
Earl J. Kirkland ◽  
Robert J. Keyse

An ultra-high resolution pole piece with a coefficient of spherical aberration Cs=0.7mm. was previously designed for a Vacuum Generators HB-501A Scanning Transmission Electron Microscope (STEM). This lens was used to produce bright field (BF) and annular dark field (ADF) images of (111) silicon with a lattice spacing of 1.92 Å. In this microscope the specimen must be loaded into the lens through the top bore (or exit bore, electrons traveling from the bottom to the top). Thus the top bore must be rather large to accommodate the specimen holder. Unfortunately, a large bore is not ideal for producing low aberrations. The old lens was thus highly asymmetrical, with an upper bore of 8.0mm. Even with this large upper bore it has not been possible to produce a tilting stage, which hampers high resolution microscopy.


2001 ◽  
Vol 7 (S2) ◽  
pp. 906-907
Author(s):  
L. F. Allard ◽  
E. Voelkl ◽  
D. A. Blom ◽  
T. A. Nolan ◽  
F. Kahl ◽  
...  

Field emission electron microscopes operating at 200kV or 300kV and incorporating aberration correctors for either the incident electron probe or for the primary aberrations of the objective lens (OL) are currently under development for several laboratories in the world. OL-corrected instruments require monochromators for the electron beam, built into the electron gun prior to the accelerating stages, in order to optimize the contrast transfer characteristics of the objective lens to push the instrumental resolution limit to well beyond 0.1nm. This will allow the point resolution limit as controlled by the correction of spherical aberration Cs to potentially extend to the instrumental limit of better than 0.1nm. Figure 1 shows the contrast transfer characteristics of a Cs-corrected 200kV TEM, both without and with a beam monochromator.Dedicated STEM instruments such as the 300kV VG-603 and lOOkV VG-501 at Oak Ridge National Laboratory, and other VG instruments at Cornell University and IBM Co. are also being adapted (by Nion Co., Kirkland, WA) to incorporate aberration correctors for the incident probe. The aim is to improve the resolution of the VG-603 instrument in dark-field imaging mode, for example, from 0.13nm to 0.05nm. in another ORNL project, the High Temperature Materials Laboratory has contracted JEOL Ltd. to construct a STEM-TEM instrument with a probe corrector designed and built by CEOS GmbH (Heidelberg, Germany).


Author(s):  
M.K. Lamvik ◽  
R.E. Worsham ◽  
D.A. Kopf ◽  
J.D. Robertson

A liquid helium cold stage offers unique advantages for biological electron microscopy, including a five-fold reduction in radiation damage, higher ultimate specimen resolution and greater stability for frozen hydrated specimens. Ultra-high vacuum and reduced surface diffusion also reduce specimen contamination to negligible levels. To make efficient use of these advantages in biological studies, however, the microscope must be able to handle a variety of specimens while quickly achieving low temperature.The cryomicroscope that is currently in operation at Duke University (Fig. 1) was originally designed and built at Oak Ridge National Laboratory as a high-resolution electron microscope with a superconducting objective lens. The well-shielded cryostat for the objective lens assures a low specimen temperature. There are two thermal shields surrounding the liquid helium vessel, each cooled by the venting cold helium gas. The inner shield is at its nominal value, 20°K, at the end of the helium transfer when gas is actively venting from the system; later during routine operation, the inner shield temperature is about 30°K.


Author(s):  
H.S. von Harrach ◽  
D.E. Jesson ◽  
S.J. Pennycook

Phase contrast TEM has been the leading technique for high resolution imaging of materials for many years, whilst STEM has been the principal method for high-resolution microanalysis. However, it was demonstrated many years ago that low angle dark-field STEM imaging is a priori capable of almost 50% higher point resolution than coherent bright-field imaging (i.e. phase contrast TEM or STEM). This advantage was not exploited until Pennycook developed the high-angle annular dark-field (ADF) technique which can provide an incoherent image showing both high image resolution and atomic number contrast.This paper describes the design and first results of a 300kV field-emission STEM (VG Microscopes HB603U) which has improved ADF STEM image resolution towards the 1 angstrom target. The instrument uses a cold field-emission gun, generating a 300 kV beam of up to 1 μA from an 11-stage accelerator. The beam is focussed on to the specimen by two condensers and a condenser-objective lens with a spherical aberration coefficient of 1.0 mm.


Author(s):  
T. Miyokawa ◽  
H. Kazumori ◽  
S. Nakagawa ◽  
C. Nielsen

We have developed a strongly excited objective lens with a built-in secondary electron detector to provide ultra-high resolution images with high quality at low to medium accelerating voltages. The JSM-6320F is a scanning electron microscope (FE-SEM) equipped with this lens and an incident beam divergence angle control lens (ACL).The objective lens is so strongly excited as to have peak axial Magnetic flux density near the specimen surface (Fig. 1). Since the speciien is located below the objective lens, a large speciien can be accomodated. The working distance (WD) with respect to the accelerating voltage is limited due to the magnetic saturation of the lens (Fig.2). The aberrations of this lens are much smaller than those of a conventional one. The spherical aberration coefficient (Cs) is approximately 1/20 and the chromatic aberration coefficient (Cc) is 1/10. for accelerating voltages below 5kV. At the medium range of accelerating voltages (5∼15kV). Cs is 1/10 and Cc is 1/7. Typical values are Cs-1.lmm. Cc=l. 5mm at WD=2mm. and Cs=3.lmm. Cc=2.9 mm at WD=5mm. This makes the lens ideal for taking ultra-high resolution images at low to medium accelerating voltages.


Author(s):  
Kiyomichi Nakai ◽  
Yusuke Isobe ◽  
Chiken Kinoshita ◽  
Kazutoshi Shinohara

Induced spinodal decomposition under electron irradiation in a Ni-Au alloy has been investigated with respect to its basic mechanism and confirmed to be caused by the relaxation of coherent strain associated with modulated structure. Modulation of white-dots on structure images of modulated structure due to high-resolution electron microscopy is reduced with irradiation. In this paper the atom arrangement of the modulated structure is confirmed with computer simulation on the structure images, and the relaxation of the coherent strain is concluded to be due to the reduction of phase-modulation.Structure images of three-dimensional modulated structure along <100> were taken with the JEM-4000EX high-resolution electron microscope at the HVEM Laboratory, Kyushu University. The transmitted beam and four 200 reflections with their satellites from the modulated structure in an fee Ni-30.0at%Au alloy under illumination of 400keV electrons were used for the structure images under a condition of the spherical aberration constant of the objective lens, Cs = 1mm, the divergence of the beam, α = 3 × 10-4 rad, underfocus, Δf ≃ -50nm and specimen thickness, t ≃ 15nm. The CIHRTEM code was used for the simulation of the structure image.


1988 ◽  
Vol 110 (4) ◽  
pp. 670-676
Author(s):  
R. R. Judkins ◽  
R. A. Bradley

The Advanced Research and Technology Development (AR&TD) Fossil Energy Materials Program is a multifaceted materials research and development program sponsored by the Office of Fossil Energy of the U.S. Department of Energy. The program is administered by the Office of Technical Coordination. In 1979, the Office of Fossil Energy assigned responsibilities for this program to the DOE Oak Ridge Operations Office (ORO) as the lead field office and Oak Ridge National Laboratory (ORNL) as the lead national laboratory. Technical activities on the program are divided into three research thrust areas: structural ceramic composites, alloy development and mechanical properties, and corrosion and erosion of alloys. In addition, assessments and technology transfer are included in a fourth thrust area. This paper provides information on the structure of the program and summarizes some of the major research activities.


1998 ◽  
Vol 4 (S2) ◽  
pp. 400-401
Author(s):  
R. Wagner ◽  
A.F. de Jong ◽  
A.G. Koster ◽  
R. Morrison ◽  
F. Tothill ◽  
...  

In order to reduce beam damage, biological TEM specimens are often observed at temperatures close to the boiling point of liquid nitrogen (77 K). Recently, encouraging results on single particles as well as on 2D crystals have appeared, derived from images taken near liquid helium temperature (4 K), in dedicated TEMs. At these temperatures the high resolution frequencies are much better preserved, increasing the allowable dose and thus the signal to noise ratio.4 Here we present the design of a new dedicated Philips He-TEM which combines the full functionality of a CM300 TWIN with a vacuum transfer system and a liquid helium cooled specimen holder.A schematic overview of the Cryo-TEM is shown in figure 1. The key differences compared to a standard CM microscope are: 1) The tip of the specimen rod is cooled below 10 K and the rod itself cannot be taken out of the goniometer (CompuStage). 2) The specimen enters the column on the opposite side.


Sign in / Sign up

Export Citation Format

Share Document