Ultrastructure and Staining of Developing Elastic Tissue

Author(s):  
E. N. Albert

Silver tetraphenylporphine sulfonate (Ag-TPPS) was synthesized in this laboratory and used as an electron dense stain for elastic tissue (Fig 1). The procedures for the synthesis of tetraphenylporphine sulfonate and the staining method for mature elastic tissue have been described previously.The fine structure of developing elastic tissue was observed in fetal and new born rat aorta using tetraphenylporphine sulfonate, phosphotungstic acid, uranyl acetate and lead citrate. The newly forming elastica consisted of two morphologically distinct components. These were a central amorphous and a peripheral fibrous. The ratio of the central amorphous and the peripheral fibrillar portion changed in favor of the former with increasing age.It was also observed that the staining properties of the two components were entirely different. The peripheral fibrous component stained with uranyl acetate and/or lead citrate while the central amorphous portion demonstrated no affinity for these stains. On the other hand, the central amorphous portion of developing elastic fibers stained vigorously with silver tetraphenylporphine sulfonate, while the fibrillar part did not (compare figs 2, 3, 4). Based upon the above observations it is proposed that developing elastica consists of two components that are morphologically and chemically different.

1966 ◽  
Vol 30 (1) ◽  
pp. 59-71 ◽  
Author(s):  
Theodore K. Greenlee ◽  
Russell Ross ◽  
Jerry L. Hartman

The fine structure of developing elastic fibers in bovine ligamentum nuchae and rat flexor digital tendon was examined. Elastic fibers were found to contain two distinct morphologic components in sections stained with uranyl acetate and lead. These components are 100 A fibrils and a central, almost amorphous nonstaining area. During development, the first identifiable elastic fibers are composed of aggregates of fine fibrils approximately 100 A in diameter. With advancing age, somewhat amorphous regions appear surrounded by these fibrils. These regions increase in prominence until in mature elastic fibers they are the predominant structure surrounded by a mantle of 100 A fibrils. Specific staining characteristics for each of the two components of the elastic fiber as well as for the collagen fibrils in these tissues can be demonstrated after staining with lead, uranyl acetate, or phosphotungstic acid. The 100 A fibrils stain with both uranyl acetate and lead, whereas the central regions of the elastic fibers stain only with phosphotungstic acid. Collagen fibrils stain with uranyl acetate or phosphotungstic acid, but not with lead. These staining reactions imply either a chemical or an organizational difference in these structures. The significance and possible nature of the two morphologic components of the elastic fiber remain to be elucidated.


Author(s):  
Roberta M. Bruck

An unusual structure in the cochlea is the spiral limbus; this periosteal tissue consists of stellate fibroblasts and collagenous fibers embedded in a translucent ground substance. The collagenous fibers are arranged in vertical columns (the auditory teeth of Haschke). Between the auditory teeth are interdental furrows in which the interdental cells are situated. These epithelial cells supposedly secrete the tectorial membrane.The fine structure of interdental cells in the rat was reported by Iurato (1962). Since the mouse appears to be different, a description of the fine structure of mouse interdental cells' is presented. Young adult C57BL/6J mice were perfused intervascularly with 1% paraformaldehyde/ 1.25% glutaraldehyde in .1M phosphate buffer (pH7.2-7.4). Intact cochlea were decalcified in .1M EDTA by the method of Baird (1967), postosmicated, dehydrated, and embedded in Araldite. Thin sections stained with uranyl acetate and lead citrate were examined in a Phillips EM-200 electron microscope.


Author(s):  
Fadhil Al-Lami ◽  
R.G. Murray

Although the fine structure of the carotid body has been described in several recent reports, uncertainties remain, and the morphological effects of anoxia on the carotid body cells of the cat have never been reported. We have, therefore, studied the fine structure of the carotid body both in normal and severely anoxic cats, and to test the specificity of the effects, have compared them with the effects on adrenal medulla, kidney, and liver of the same animals. Carotid bodies of 50 normal and 15 severely anoxic cats (9% oxygen in nitrogen) were studied. Glutaraldehyde followed by OsO4 fixations, Epon 812 embedding, and uranyl acetate and lead citrate staining, were the technics employed.We have called the two types of glomus cells enclosed and enclosing cells. They correspond to those previously designated as chemoreceptor and sustentacular cells respectively (1). The enclosed cells forming the vast majority, are irregular in shape with many processes and occasional peripheral densities (Fig. 1).


1978 ◽  
Vol 56 (7) ◽  
pp. 862-872 ◽  
Author(s):  
James W. Kimbrough ◽  
Gerald L. Benny

Ultrastructural and cytochemical studies on the ascus of Lasiobolus monascus are presented. Apothecia in various stages of development were obtained in culture and prepared for both light and electron microscopic observations. Ultrathin sections for electron microscopic inspection were often treated with silver methenamine to enhance wall characteristics. Ascus development was followed from fertilization to maturity.In this species, the ascogonium enlarges after fertilization to become the ascus mother cell. Two pores are present in the young ascus, one connecting it to the antheridium and another between the ascus and stalk cell. The ultrastructural features of these pores in the young and maturing ascus are described. During ascus enlargement, as many as four wall layers are found when poststained with silver methenamine. Only two layers are clearly distinguishable when poststained with uranyl acetate and lead citrate. The apical zone of dehiscence is characterized by a distinct annular swelling which appears during early ascosporogenesis. By spore maturation, this swelling is not evident either at the light or electron microscopic level. Instead, there appear to be both physical and chemical changes in the area of dehiscence. The wall is distinctly thinner and much more electron transparent in the area of dehiscence when treated with silver methanamine.


Author(s):  
V. Mizuhira ◽  
Y. Futaesaku ◽  
H. Nakamura

It is well known that the elastic fibers do not stain well with conventional electron fixation and staining methods. However some investigators have tried to demonstrate elastic fibers as a stained structure under the electron microscope. Greenlee et al.(1966) and Ouintarelli et al.(1973) reported a phosphotaungstic acid staining method for elastic fibers; Albert (1970 & 1971) reported his results using a metalic tetraphenylprophine staining method.In the contrast to these staining methods for elastic fibers, Mizuhira et al (1971,'72, ‘75) have succeeded in demonstrating elastic fibers very clearly using an improved fixation method for proteins with glutaraldehyde containing tannic acid, followed by the osmium tetraoxide method.This new fixation method is very simple. Aorta, ear cartilage, intestine or skin are fixed with 2.5 % glutaraldehyde, containing 0.5 % to 4 % tannic acid buffered with veronal acetate or phosphate at pH 6.8 to 7.2 for 1.5 hrs to overnight.


Author(s):  
C.N. Sun ◽  
H.J. White ◽  
R.C. Read

Previously we have reported the defect of collagen fibrils from herniated rectus sheath. This presentation includes additional sections from postsurgical incisions (10 days) from both control and hernia patients. Small pieces of rectus sheath were fixed in 3% glutaraldehyde in phosphate buffer (pH 7.2) and post fixed with buffered 2% osmium tetroxide. The tissues were then dehydrated in serially increasing concentrations of alcohol and embedded in Epon 812. Sections were stained with 2.5% phosphotungstic acid or uranyl acetate and lead citrate.Previously we found that collagen fibrils from "non-herniated" rectus sheath have uniform diameters and 640 Å periodicity with seven or more intraperiodic bands resembling typical native collagen fibrils, while the fibrils from fascia obtained from patients with direct herniation show considerable variation in diameter. These variations are often found in the same individual fibers with a range from 300 Å to 3000 Å.


Author(s):  
J.A. Nordquist ◽  
K. Chrysant ◽  
A.K. Mandal

By electron microscopy elastic tissue appear electrolucent in osmium fixed unstained grids as well as grids stained with uranyl acetate and lead citrate (UA + LC). Albert and Fleischer have studied aorta of mice with metalloporphyrins imparting conspicuous electron density to the elastic tissue. We are reporting here a modified method of electron microscopic (EM) study of the elastic tissue using metalloporhyrin, silver tetraphenyl porphyrin sulfonate (STPPS).We have studied the renal arterioles of rats and human in normal and diseased states. Elastic tissue of the aorta from young normal rat served as control for this study. Renal and aortic tissues were fixed in 4 percent glutaraldehyde, post fixed in 1 percent osmium tetroxide and embedded in spurr (blocks). From the blocks of renal tissue, 0.5 μ sections were cut, stained with methylene blue and azure II and studied by light microscopy.


Author(s):  
K. C. Liu

The fine structure of the gill lamellae of fish has been reported for several species. All of them consisted the same types of cells and showed the same characteristics. The structural change of the gill lamellae under natural condition, after death was not reported. This report is to present a study on that event.Gill filaments from cultured Anguilla japonica, Tilapia sp. and Chanos chanos, of marketing size, both fresh and dead for different length of time were studied. The samples were fixed with 3% glutaraldehyde and 1% osmic acid, dehydrated with ethanol, and embedded with Epon and Araldite mixture. Thin section were stained with uranyl acetate and lead citrate. Observations were made with a JEOL 100 CX electron microscpe at 60 KV.The gill lamella of all three species studied showed similar fine stuctural characteristics . They consisted a central raw of pillar cells which formed the blood lumen. A layer of epithelium covered the outer surface . There was a prominent layer of basal limina between those two types of cells (Fig. 1). The epithelium showed degeneration first. It disintegrated and ditached from the basal lamina, and formed debris.


1969 ◽  
Vol 4 (2) ◽  
pp. 421-436
Author(s):  
J. W. SMITH ◽  
J. FRAME

The form and interrelationship of the collagen fibrils and proteinpolysaccharide complex of rabbit corneal stroma were studied by electron microscopy. The intact tissue was examined as Araldite sections stained with alkaline lead citrate and uranyl acetate, and the mechanically disintegrated cornea after positive or negative staining with phosphotungstic acid or after treatment with 0.5% bismuth nitrate in 0.1 M nitric acid. The corneal collagen fibrils vary in cross-sectional area from 4.6 to 9.6 x 104 sq. Å and do not exhibit a regular hexagonal distribution. Like tendon fibrils they consist of longitudinal filaments, but their appearance suggests that they lack some of the interfilament cross-links present in tendon. In sections of intact cornea and in negatively stained disintegrated cornea, filaments which are considered to be the protein cores of proteinpolysaccharide macromolecules are evident. They are about 40 Å wide and 2000 Å long. They appear to run an angular course, orthogonal to the collagen fibrils, and to be tangentially attached to several fibrils in the region of the a band. After treatment with bismuth nitrate disintegrated cornea contains coarsely beaded filaments. The filaments are about 2000 Å long and the beads about 70 Å in diameter. It is considered that these are again proteinpolysaccharide macromolecules and that each bead represents one or more polysaccharide chains in coiled configuration.


Author(s):  
Betty I. Roots

In teleosts the optic tectum is the major integrative centre in the brain. The cyto- and fibre architecture of the optic tectum have been studied extensively and a well-defined laminar pattern has been described. Here some aspects of the fine structure of the optic tectum of the goldfish, Carassius auratus, will be described and discussed. Goldfish which had been kept at a temperature of 15°C were fixed by perfusion with 2. 5% glutaraldehyde in a phosphate buffer. After fixation pieces of the optic tectum from both dorsal and ventral regions, cut so that their original orientation in the tectum could be determined by their shape, were removed. They were post-fixed in 1% osmium tetroxide in the same buffer for 1 1/2 h, dehydrated, stained in 2% uranyl acetate and embedded in epon. Sections were stained with lead citrate.Lining the ventrical is the ependyma consisting of epithelial-like cells which are 5. 4 μm in diameter, are ciliated, and joined by both desmosomes and tight junctions between their somata.


Sign in / Sign up

Export Citation Format

Share Document