TEM studies of dislocations in deformed Ga1-xInxAs single crystals

Author(s):  
R. S. Rai ◽  
S. Guruswamy ◽  
K. T. Faber ◽  
J. P. Hirth

The perfection of GaAs single crystals can be controlled by doping the GaAs with In, at a level of about 5x1019-1x1020/cm3, in single crystals grown by the LEC process. It has been observed that In doping at this level reduces the grown in dislocation density from 104-l05 to ≤ 102/cm2 and results in a large increase in high temperature strength . However, the role of In in dislocation density reduction is not clearly understood. Therefore, a systematic study has been performed with the help of high temperature deformation of In-doped and undoped GaAs single crystals followed by dislocation structural characterization by transmission electron microscopy of the deformed specimens. Here, some results of dislocation studies performed by TEM are descri bed.Samples were examined in a JEOL JEM 200CX transmission electron microscope equipped with a double tilt goniometer stage. The standard g.b criterion was employed for characterization of dislocations. Dark-field weak beam pictures were taken for characterization of partial dislocations and dipoles.

Author(s):  
A. Garg ◽  
R. D. Noebe ◽  
R. Darolia

Small additions of Hf to NiAl produce a significant increase in the high-temperature strength of single crystals. Hf has a very limited solubility in NiAl and in the presence of Si, results in a high density of G-phase (Ni16Hf6Si7) cuboidal precipitates and some G-platelets in a NiAl matrix. These precipitates have a F.C.C structure and nucleate on {100}NiAl planes with almost perfect coherency and a cube-on-cube orientation-relationship (O.R.). However, G-phase is metastable and after prolonged aging at high temperature dissolves at the expense of a more stable Heusler (β'-Ni2AlHf) phase. In addition to these two phases, a third phase was shown to be present in a NiAl-0.3at. % Hf alloy, but was not previously identified (Fig. 4 of ref. 2 ). In this work, we report the morphology, crystal-structure, O.R., and stability of this unknown phase, which were determined using conventional and analytical transmission electron microscopy (TEM).Single crystals of NiAl containing 0.5at. % Hf were grown by a Bridgman technique. Chemical analysis indicated that these crystals also contained Si, which was not an intentional alloying addition but was picked up from the shell mold during directional solidification.


2012 ◽  
Vol 510 ◽  
pp. 729-733
Author(s):  
Feng Bo Han ◽  
Jin Shan Li ◽  
Hong Chao Kou ◽  
Bin Tang ◽  
Min Jie Lai ◽  
...  

A constitutive model using dislocation density rate as an internal state variable has been proposed for hot working of β titanium alloy in this paper. The β phase was only taken into consideration during high temperature deformation. The solution strengthening and dislocation interaction were included in the constitutive equations. The strength coefficient was determined by equivalent vanadium content, Veq, which was calculated according to the alloy constituent. A Kocks-Mecking model was adopted to describe the variation of dislocation density. The constitutive relationship of a β titanium alloy Ti-10V-4.5Fe-1.5Al for high temperature deformation was established using the internal-state-variable based model. Model parameters were determined by the genetic algorithm based objective optimization method. The predicted results agree fairly well with the experimental value.


1996 ◽  
Vol 101 (B9) ◽  
pp. 20377-20390 ◽  
Author(s):  
Z.-C. Wang ◽  
Q. Bai ◽  
G. Dresen ◽  
R. Wirth ◽  
B. Evans

2007 ◽  
Vol 558-559 ◽  
pp. 517-522
Author(s):  
Ming Xin Huang ◽  
Pedro E.J. Rivera-Díaz-del-Castillo ◽  
Sybrand van der Zwaag

A non-equilibrium thermodynamics-based approach is proposed to predict the dislocation density and flow stress at the steady state of high temperature deformation. For a material undergoing dynamic recovery and recrystallization, it is found that the total dislocation density can be expressed as ( )2 ρ = λε& b , where ε& is the strain rate, b is the magnitude of the Burgers vector and λ is a dynamic recovery and recrystallization related parameter.


1990 ◽  
Vol 213 ◽  
Author(s):  
C. Steve Chang ◽  
D. P. Pope

AbstractHigh temperature compression tests were performed on Cr 3Si single crystalline and poly crystalline samples. Slip systems were determined to be of the {001}<010> type based on an analysis of slip traces and Laue spots. Single crystals show significant compressive ductility at temperatures above 0.7Tm. The implication of cube slip on the ductility of A15-type intermetallic compounds is discussed.


Sign in / Sign up

Export Citation Format

Share Document