Ultrastructural Study of a differentiating human colon carcinoma cell line

Author(s):  
Sylvie Polak-Charcon ◽  
Mehrdad Hekmati ◽  
Yehuda Ben Shaul

The epithelium of normal human colon mucosa “in vivo” exhibits a gradual pattern of differentiation as undifferentiated stem cells from the base of the crypt of “lieberkuhn” rapidly divide, differentiate and migrate toward the free surface. The major differentiated cell type of the intestine observed are: absorptive cells displaying brush border, goblet cells containing mucous granules, Paneth and endocrine cells containing dense secretory granules. These different cell types are also found in the intestine of the 13-14 week old embryo.We present here morphological evidence showing that HT29, an adenocarcinoma of the human colon cell line, can differentiate into various cell types by changing the growth and culture conditions and mimic morphological changes found during development of the intestine in the human embryo.HT29 cells grown in tissue-culture dishes in DMEM and 10% FCS form at late confluence a multilayer of morphologically undifferentiated cell culture covered with irregular microvilli, and devoid of tight junctions (Figs 1-3).

1992 ◽  
Vol 102 (3) ◽  
pp. 581-600 ◽  
Author(s):  
M.D. Peterson ◽  
M.S. Mooseker

The brush border (BB) of the enterocyte is a well-studied example of the actin-based cytoskeleton. We describe here a cell culture model that expresses a faithful representation of the in vivo structure. Two clones (C2BBe 1 and 2) isolated from the cell line Caco-2 (derived from a human colonic adenocarcinoma) formed a polarized monolayer with an apical BB morphologically comparable to that of the human colon. BBs could be isolated by standard methods and contained the microvillar proteins villin, fimbrin, sucrase-isomaltase and BB myosin I, and the terminal web proteins fodrin and myosin II. The immunolocalization of these proteins in confluent, filter-grown monolayers was determined by laser scanning confocal microscopy; patterns of distribution comparable to those in human enterocytes were observed. Sedimentation analysis of cell homogenates derived from C2BBe cells and human colonic epithelial cells demonstrated similar patterns of fractionation of BB proteins; the physical association of those proteins, as determined by extraction from the BB, was also comparable between the two cell types. Like enterocytes of the human intestine, C2BBe cells expressed multiple myosin I immunogens reactive with a head domain-specific monoclonal antibody raised against avian BB myosin I, one of which co-migrated with the approximately 110 kilodalton (kDa) heavy chain of human BB myosin I. In addition, the C2BBe cells express a pair of higher molecular mass immunogens (130 and 140 kDa). These myosin I immunogens all exhibit ATP-dependent association with the C2BBe cytoskeleton. Although the higher molecular mass immunogens were detected in several other human intestinal lines examined, including the parent Caco-2 line, none of these other lines expressed detectable levels of the 110 kDa immunogen, which is presumed to be the heavy chain of human BB myosin I.


Tetrahedron ◽  
2002 ◽  
Vol 58 (25) ◽  
pp. 5109-5117 ◽  
Author(s):  
Jan Lindberg ◽  
Stefan C.T Svensson ◽  
Peter Påhlsson ◽  
Peter Konradsson

2011 ◽  
Vol 205 ◽  
pp. S116-S117
Author(s):  
M. Rezaei ◽  
H. Kalantari ◽  
M. HashemiTabar ◽  
M. Jafari ◽  
Z. Bahadori

Development ◽  
1991 ◽  
Vol 112 (1) ◽  
pp. 301-305 ◽  
Author(s):  
A. Baroffio ◽  
E. Dupin ◽  
N.M. Le Douarin

The cephalic neural crest (NC) of vertebrate embryos yields a variety of cell types belonging to the neuronal, glial, melanocytic and mesectodermal lineages. Using clonal cultures of quail migrating cephalic NC cells, we demonstrated that neurons and glial cells of the peripheral nervous system can originate from the same progenitors as cartilage, one of the mesectodermal derivatives of the NC. Moreover, we obtained evidence that the migrating cephalic NC contains a few highly multipotent precursors that are common to neurons, glia, cartilage and pigment cells and which we interprete as representative of a stem cell population. In contrast, other NC cells, although provided with identical culture conditions, give rise to clones composed of only one or some of these cell types. These cells thus appear restricted in their developmental potentialities compared to multipotent cells. It is therefore proposed that, in vivo, the active proliferation of pluripotent NC cells during the migration process generates distinct subpopulations of cells that become progressively committed to different developmental fates.


1988 ◽  
Vol 8 (10) ◽  
pp. 4243-4249
Author(s):  
J Filmus ◽  
J G Church ◽  
R N Buick

We report the isolation of a cDNA clone corresponding to a transcript that is accumulated differentially in rat intestine during development. Clone OCI-5 was selected from the rat intestinal cell line IEC-18, which represents primitive intestinal epithelial crypt cells. Expression was high in rat fetal intestine between 15 and 19 days of development and thereafter was progressively down regulated, becoming undetectable after weaning. Clone OCI-5 detected homologous sequences in human and murine cells. In particular, a high level of expression was detected in CaCo-2, a human colon carcinoma cell line, which is known to express molecules characteristic of fetal small intestinal cells. Expression of a homologous gene was also detected in F9 murine teratocarcinoma cells when they were induced to differentiate into parietal or visceral endodermlike cells. When IEC-18 cells were transformed by activated H-ras or v-src genes, expression of clone OCI-5 was suppressed; the degree of down-regulation correlated with the extent of morphological change induced in the transformed IEC-18 cells. The sequence of clone OCI-5 showed an open reading frame that was capable of encoding a protein of 597 amino acids, but no strong homology was found with any of the proteins registered in the protein sequence data base.


Sign in / Sign up

Export Citation Format

Share Document