A Simple Correlative Technique for Morphologic and Energy-Dispersive Analysis of Glass-Mounted Paraffin Sections

Author(s):  
K. W. Baker ◽  
L. King ◽  
R. Walker ◽  
I. Piscopo ◽  
A. Smith

Tissue sections, smears, and many other varied types of specimen are often mounted on glass slides for light microscopic (LM) evaluation and analysis. These same preparations’ using gold/palladiumcoated glass slides as specimen mounts, are also well suited to correlative scanning electron microscopy (SEM) and, energy dispersive X-ray analysis (SEM/EDX). The following short note describes a procedure for glass-mounted specimens that provides slides suitable for combined LM, SEM and SEM/EDX characterization. In addition, the method establishes a specimen-based reference point for the empirical determination of optimum electron probe depth and accelerating voltage for SEM/EDX analysis.For illustrative purposes we used sections of mammalian kidney cortex known to be heavily laden with crystalline deposits of unknown structure and composition.In each sample, birefringent crystalline material was initially observed in hematoxylin and eosinstained paraffin sections using bright field polarized light microscopy (Fig. 1).

Author(s):  
W. E. Rigsby ◽  
D. M. Hinton ◽  
V. J. Hurst ◽  
P. C. McCaskey

Crystalline intracellular inclusions are rarely seen in mammalian tissues and are often difficult to positively identify. Lymph node and liver tissue samples were obtained from two cows which had been rejected at the slaughter house due to the abnormal appearance of these organs in the animals. The samples were fixed in formaldehyde and some of the fixed material was embedded in paraffin. Examination of the paraffin sections with polarized light microscopy revealed the presence of numerous crystals in both hepatic and lymph tissue sections. Tissue sections were then deparaffinized in xylene, mounted, carbon coated, and examined in a Phillips 505T SEM equipped with a Tracor Northern X-ray Energy Dispersive Spectroscopy (EDS) system. Crystals were obscured by cellular components and membranes so that EDS spectra were only obtainable from whole cells. Tissue samples which had been fixed but not paraffin-embedded were dehydrated, embedded in Spurrs plastic, and sectioned.


Author(s):  
Allen Angel ◽  
Kathryn A. Jakes

Fabrics recovered from archaeological sites often are so badly degraded that fiber identification based on physical morphology is difficult. Although diagenetic changes may be viewed as destructive to factors necessary for the discernment of fiber information, changes occurring during any stage of a fiber's lifetime leave a record within the fiber's chemical and physical structure. These alterations may offer valuable clues to understanding the conditions of the fiber's growth, fiber preparation and fabric processing technology and conditions of burial or long term storage (1).Energy dispersive spectrometry has been reported to be suitable for determination of mordant treatment on historic fibers (2,3) and has been used to characterize metal wrapping of combination yarns (4,5). In this study, a technique is developed which provides fractured cross sections of fibers for x-ray analysis and elemental mapping. In addition, backscattered electron imaging (BSI) and energy dispersive x-ray microanalysis (EDS) are utilized to correlate elements to their distribution in fibers.


Author(s):  
Robyn Rufner ◽  
Gerhard W. Hacker ◽  
Michele Forte ◽  
Nancyleigh E. Carson ◽  
Cristina Xenachis ◽  
...  

The use of immunogold-silver staining (IGSS) to enhance label penetration and Localization for immunocytochemistry or in situ hybridization utilizing a variety of metallic salts has been documented. In this morphological study, the effects of silver acetate, silver lactate and silver nitrate were evaluated for immunogold-labeling of a trial natriuretic peptides (ANP) in rat right atria.Eight Wistar Kyoto retired breeders were sedated with pentobarbital, perfused with either 4% paraformaldehyde (LM) or Karnovsky's fixative (EM), and right atria were dissected, processed, embedded in paraffin or epon, respectively and sectioned according to conventional methods. For light microscopy, an indirect IGSS method according to Hacker (3) was performed. Paraffin sections on glass slides were washed in ddH2O, immersed in Lugol's iodine, washed in ddH2O and treated with 2.5% aqueous sodium thiosulfate for 20 sec. After additional washes in ddH2O and TBS-0.1% fish gelatin, 10% normal goat serum (PBS with 1% BSA) was applied for 20 min before an overnight incubation at 4°C with a polyclonal α-ANP primary antibody (Peninsula Labs, 1:1000 in TBS/BSA).


2005 ◽  
Vol 39 (4) ◽  
pp. 391-394 ◽  
Author(s):  
Binbin Wang ◽  
John C. Jackson ◽  
Curtis Palmer ◽  
Baoshan Zheng ◽  
Robert B. Finkelman
Keyword(s):  

1994 ◽  
Vol 349 (6) ◽  
pp. 434-437 ◽  
Author(s):  
R. M. Agrawal ◽  
S. N. Jha ◽  
Rugmini Kaimal ◽  
S. K. Malhotra ◽  
B. L. Jangida

Sign in / Sign up

Export Citation Format

Share Document