Subcellular localization of the latent membrane protein LMP-1 in Epstein-Barr virus infected cells by immunogold EM

Author(s):  
D. N. Misra ◽  
R. M. Agostini ◽  
E. J. Yunis

Epstein-Barr virus (EBV) infection, prevalent in all human populations, is clinically silent in general, but causes infectious mononucleosis in some adolescents and B-lymphocyte proliferative disorders (LPDs) in immunocompromised individuals (e.g. AIDS infected; allograft recipients). EBV is also etiologically associated with African Burkitt’s lymphoma, nasopharyngeal carcinoma, and Hodgkin’s disease. The virus infects B lymphocytes and transforms them into lymphoblastoid cells which proliferate indefinitely in culture. The latently infected cells express an array of EBV gene products including 6 nuclear antigens (EBNAs), terminal proteins LMP-2A and LMP-2B, latent membrane protein LMP-1, and untranslated RNAs EBER 1 and EBER 2. These components are being extensively studied since they are involved in latency or proliferative transformation; LMP-1 has also shown oncogenic properties. In this work, we have used immunogold electron microscopy for precise subcellular localization of LMP-1 in EBV infected cell lines.Two human cell lines, P3HR-1 (Burkitt’s lymphoma) and CCL-113 (Hodgkin’s disease), obtained from ATCC, were grown in RPMI 1640 containing 20% fetal calf serum, 100 U/ml penicillin and 100 μg/ml streptomycin.

2004 ◽  
Vol 78 (4) ◽  
pp. 1800-1816 ◽  
Author(s):  
Brendan N. D'Souza ◽  
Leonard C. Edelstein ◽  
Pamela M. Pegman ◽  
Sinéad M. Smith ◽  
Sinéad T. Loughran ◽  
...  

ABSTRACT Suppression of the cellular apoptotic program by the oncogenic herpesvirus Epstein-Barr virus (EBV) is central to both the establishment of latent infection and the development of EBV-associated malignancies. We have previously shown that expression of the EBV latent membrane protein 1 (LMP1) in Burkitt's lymphoma cell lines leads to increased mRNA levels from the cellular antiapoptotic bfl-1 gene (also known as A1). Furthermore, ectopic expression of Bfl-1 in an EBV-positive cell line exhibiting a latency type 1 infection protects against apoptosis induced by growth factor deprivation (B. N. D'Souza, M. Rowe, and D. Walls, J. Virol. 74:6652-6658, 2000). We now report that LMP1 drives bfl-1 promoter activity through interactions with components of the tumor necrosis factor receptor (TNFR)/CD40 signaling pathway. We present evidence that this process is NF-κB dependent, involves the recruitment of TNFR-associated factor 2, and is mediated to a greater extent by the carboxyl-terminal activating region 2 (CTAR2) relative to the CTAR1 domain of LMP1. Activation of CD40 receptor also led to increased bfl-1 mRNA levels and an NF-κB-dependent increase in bfl-1 promoter activity in Burkitt's lymphoma-derived cell lines. We have delineated a 95-bp region of the promoter that functions as an LMP1-dependent transcriptional enhancer in this cellular context. This sequence contains a novel NF-κB-like binding motif that is essential for transactivation of bfl-1 by LMP1, CD40, and the NF-κB subunit protein p65. These findings highlight the role of LMP1 as a mediator of EBV-host cell interactions and may indicate an important route by which it exerts its cellular growth transforming properties.


Blood ◽  
1998 ◽  
Vol 92 (5) ◽  
pp. 1721-1727 ◽  
Author(s):  
Jamie L. Kenney ◽  
Mary E. Guinness ◽  
Tyler Curiel ◽  
Jill Lacy

Abstract The Epstein-Barr virus (EBV)-encoded latent membrane protein (LMP-1) is required for viral transformation and functions to protect cells from apoptotic cell death, in part, by induction of antiapoptotic genes, including Bcl-2 and A20. We have used antisense oligodeoxynucleotides targeted to LMP-1 as a strategy to suppress LMP-1 expression and thereby inhibit its functions. We have shown that levels of LMP-1 protein in EBV-positive lymphoblastoid cell lines can be reduced by in vitro treatment with unmodified oligodeoxynucleotides targeted to the first five codons of the LMP-1 open-reading frame. Furthermore, suppression of LMP-1 was associated with molecular and phenotypic effects that included downregulation of the LMP-1–inducible antiapoptotic genes, Bcl-2 and Mcl-1, inhibition of proliferation, stimulation of apoptosis, and enhancement of sensitivity to the chemotherapeutic agent, etoposide. These effects were largely sequence-specific and observed in EBV-positive, but not EBV-negative cell lines. These studies suggest that lowering expression of LMP-1 in EBV-associated malignancy might have therapeutic effects and might synergize with other antitumor agents. © 1998 by The American Society of Hematology.


Cell Cycle ◽  
2010 ◽  
Vol 9 (5) ◽  
pp. 901-908 ◽  
Author(s):  
Kathryn T. Bieging ◽  
Michelle Swanson-Mungerson ◽  
Alexandra C. Amick ◽  
Richard Longnecker

Blood ◽  
1997 ◽  
Vol 90 (4) ◽  
pp. 1664-1672 ◽  
Author(s):  
G. Niedobitek ◽  
E. Kremmer ◽  
H. Herbst ◽  
L. Whitehead ◽  
C.W. Dawson ◽  
...  

We describe two new monoclonal antibodies specific for the Epstein-Barr virus (EBV)-encoded latent membrane protein 2A (LMP2A) that are suitable for the immunohistochemical analysis of routinely processed paraffin sections. These antibodies were applied to the immunohistochemical detection of LMP2A in Hodgkin's disease (HD). LMP2A-specific membrane staining was seen in the Hodgkin and Reed-Sternberg (HRS) cells of 22 of 42 (52%) EBV-positive HD cases, but not in 39 EBV-negative HD cases. In lymphoid tissues from patients with acute infectious mononucleosis (IM), interfollicular immunoblasts were shown to express LMP2A. This is the first demonstration of LMP2A protein expression at the single-cell level in EBV-associated lymphoproliferations in vivo. The detection of LMP2A protein expression in HD and IM is of importance in view of the proposed role of this protein for maintaining latent EBV infection and its possible contribution for EBV-associated transformation. Because LMP2A provides target epitopes for EBV-specific cytotoxic T cells, the expression of this protein in HRS cells has implications for the immunotherapeutic approaches to the treatment of HD.


2007 ◽  
Vol 82 (4) ◽  
pp. 1946-1958 ◽  
Author(s):  
Jennifer E. Cameron ◽  
Qinyan Yin ◽  
Claire Fewell ◽  
Michelle Lacey ◽  
Jane McBride ◽  
...  

ABSTRACT The Epstein-Barr virus (EBV)-encoded latent membrane protein 1 (LMP1) is a functional homologue of the tumor necrosis factor receptor family and contributes substantially to the oncogenic potential of EBV through activation of nuclear factor κB (NF-κB). MicroRNAs (miRNAs) are a class of small RNA molecules that are involved in the regulation of cellular processes such as growth, development, and apoptosis and have recently been linked to cancer phenotypes. Through miRNA microarray analysis, we demonstrate that LMP1 dysregulates the expression of several cellular miRNAs, including the most highly regulated of these, miR-146a. Quantitative reverse transcription-PCR analysis confirmed induced expression of miR-146a by LMP1. Analysis of miR-146a expression in EBV latency type III and type I cell lines revealed substantial expression of miR-146a in type III (which express LMP1) but not in type I cell lines. Reporter studies demonstrated that LMP1 induces miR-146a predominantly through two NF-κB binding sites in the miR-146a promoter and identified a role for an Oct-1 site in conferring basal and induced expression. Array analysis of cellular mRNAs expressed in Akata cells transduced with an miR-146a-expressing retrovirus identified genes that are directly or indirectly regulated by miR-146a, including a group of interferon-responsive genes that are inhibited by miR-146a. Since miR-146a is known to be induced by agents that activate the interferon response pathway (including LMP1), these results suggest that miR-146a functions in a negative feedback loop to modulate the intensity and/or duration of the interferon response.


2004 ◽  
Vol 24 (12) ◽  
pp. 5223-5234 ◽  
Author(s):  
Naohiro Wakisaka ◽  
Satoru Kondo ◽  
Tomokazu Yoshizaki ◽  
Shigeyuki Murono ◽  
Mitsuru Furukawa ◽  
...  

ABSTRACT Hypoxia-inducible factor 1 (HIF-1) is a heterodimeric basic helix-loop-helix transcription factor composed of HIF-1α and HIF-1β that is the central regulator of responses to hypoxia. The specific binding of HIF-1 to the hypoxia-responsive element (HRE) induces the transcription of genes that respond to hypoxic conditions, including vascular endothelial growth factor (VEGF). Here we report that expression of HIF-1α is increased in diverse Epstein-Barr virus (EBV)-infected type II and III cell lines, which express EBV latent membrane protein 1 (LMP1), the principal EBV oncoprotein, as well as other latency proteins, but not in the parental EBV-negative cell lines. We show first that transfection of an LMP1 expression plasmid into Ad-AH cells, an EBV-negative nasopharyngeal epithelial cell line, induces synthesis of HIF-1α protein without increasing its stability or mRNA level. The mitogen-activated protein kinase (MAPK) kinase inhibitor PD98059 markedly reduces induction of HIF-1α by LMP1. Catalase, an H2O2 scavenger, strongly suppresses LMP1-induced production of H2O2, which results in a decrease in the expression of HIF-1α induced by LMP1. Inhibition of the NF-κB, c-jun N-terminal kinase, p38 MAPK, and phosphatidylinositol 3-kinase pathways did not affect HIF-1α expression. Moreover, LMP1 induces HIF-1 DNA binding activity and upregulates HRE and VEGF promoter transcriptional activity. Finally, LMP1 increases the appearance of VEGF protein in extracellular fluids; induction of VEGF is suppressed by PD98059 or catalase. These results suggest that LMP1 increases HIF-1 activity through induction of HIF-1α protein expression, which is controlled by p42/p44 MAPK activity and H2O2. The ability of EBV, and specifically its major oncoprotein, LMP1, to induce HIF-1α along with other invasiveness and angiogenic factors reported previously discloses additional oncogenic properties of this tumor virus.


Sign in / Sign up

Export Citation Format

Share Document