CBED analysis of extended defects in melt-grown GaSe single crystals

Author(s):  
C. De Blasi ◽  
D. Manno

The study of dislocations and stacking faults in melt grown GaSe single crystals has been carried out by the Convergent Beam Electron Diffraction (CBED) technique.The presence of stacking faults induces distortions in the Kikuchi lines observed in the CBED transmitted disk. According to the kinematical condition of the stacking fault visibility, such lines show modifications when g·R is not integer, The displacement vector R has been determined by the analysis of the visibility and invisibility conditions in the transmitted disk, recorded according to the Tanaka method, The Burgers vector b of dislocations has been determined by the analysis of the modifications induced both in Kikuchi lines and in the First Order Laue Zone (FOLZ) reflections, observed in low camera length CBED patterns. Splitting and unsplitting of the reflections correspond to the visibility and invisibility of the dislocations in the kinematical approximation of diffraction contrast, The condition g·b = 0 is not strictly a sufficient condition for the vanishing of the modifications induced by the dislocation, neverthless it is generally very useful as a criterion for determining the direction of b, Moreover, some reflections g give g·b = ⅓ in the case of partial dislocations. This condition does not produce enough contrast to be detected, so that it is one more for the defect invisibility. The Thompson construction has been used in order to calculate the amplitude of b and to discriminate perfect or partial dislocations.

Author(s):  
Yimei Zhu ◽  
Hong Zhang ◽  
A.R. Moodenbaugh ◽  
M. Suenaga

Abundant dislocations and dislocations associated with stacking faults were observed and characterized in YBa2Cu3O7−δ (δ= 0.77). The crystallographic orientation of the dislocation and the fault were analyzed using Kikuchi patterns matched with computer generated Kikuchi maps. The Burgers vector of the dislocation and the displacement vector of the fault were determined by using the g·b = 0 and g · R=0 criteria.Bulk samples of YBa2Cu3O7 were produced by standard pressing and sintering up to 970 °C. Samples were heated in air, then quenched into liquid nitrogen to reduce oxygen content. Subsequent anneal at 200 ° C took place with samples sealed in silica with 1/2 atm. of argon. TEM specimens were thinned by ion mill and examined in a JEOL 2000FX electron microscope operating at 200kv.X-ray powder diffraction and convergent beam electron diffraction with 200 Å spot size show that YBa2Cu3O6.23 has a tetragonal structure.


1996 ◽  
Vol 423 ◽  
Author(s):  
W. Huang ◽  
M. Dudley ◽  
C. Fazi

AbstractDefect structures in (111) 3C-SiC single crystals, grown using the Baikov technique, have been studied using Synchrotron White Beam X-ray Topography (SWBXT). The major types of defects include complex growth sector boundary structures, double positioning twins, stacking faults on { 111 } planes, inclusions and dislocations (including growth dislocations and partial dislocations bounding stacking faults). Detailed stacking fault and double positioning twin configurations are determined using a combination of Nomarski interference microscopy, SEM and white beam x-ray topography in both transmission and reflection geometries. Possible defect generation phenomena are discussed.


Crystals ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1009
Author(s):  
Yutaka Ohno ◽  
Yuta Kubouchi ◽  
Hideto Yoshida ◽  
Toshio Kochiya ◽  
Tomio Kajigaya

The origin of twinning during the Czochralski (CZ) growth of 36°-RY lithium tantalate (LiTaO3) single crystals is examined, and it is shown that lineages composed of dislocation arrays act as an initiation site for twinning. Two types of lineages expand roughly along three different {12¯10} planes and two different {11¯00} planes. The former lineages and some latter lineages are composed of two types of mixed-dislocations with different Burgers vectors, while the other lineages are composed of only one type of edge-dislocation. All the dislocations have the Burgers vector of ⟨12¯10⟩ type with the compression side at the +Z side. Twin lamellae on {101¯2} are generated at a lineage during the CZ growth. We have hypothesized that dislocations in the lineage with b = 1/3⟨12¯10⟩ change their extension direction along a slip plane of {101¯2}, and they dissociate into pairs of partial dislocations with b = 1/6⟨22¯01⟩and 1/6⟨02¯21¯⟩ forming twin lamellae on {101¯2}.


Crystals ◽  
2019 ◽  
Vol 9 (8) ◽  
pp. 386
Author(s):  
Takeo Hondoh

Dislocations in ice behave very differently from those in other materials due to the very low energies of stacking faults in the ice basal plane. As a result, the dislocations dissociate on the basal plane, from a perfect dislocation into two partial dislocations with equilibrium width we ranging from 20 to 500 nm, but what is the timescale to reach this dissociated state? Using physical models, we estimate this timescale by calculating two time-constants: the dissociation-completing time td and the dissociation-beginning time tb. These time constants are calculated for two Burgers vectors as a function of temperature. For perfect dislocations with Burgers vector <c + a>, td is more than one month even at the melting temperature TM, and it exceeds 103 years below −50 ℃, meaning that the dissociation cannot be completed during deformation over laboratory timescales. However, in this case the beginning time tb is less than one second at TM, and it is within several tens of minutes above −50 ℃. These dislocations can glide on non-basal planes until they turn to the dissociated state during deformation, finally resulting in sessile extended dislocations of various widths approaching to the equilibrium value we. In contrast, for perfect dislocations with Burgers vector <a>, td is less than one second above −50 ℃, resulting in glissile extended dislocations with the equilibrium width we on the basal plane. This width is sensitive to the shear stress τ exerted normal to the dislocation line, leading to extension of the intervening stacking fault across the entire crystal grain under commonly accessible stresses. Also, due to the widely dissociated state, dislocations <a> cannot cross-slip to non-basal planes. Such behavior of extended dislocations in ice are notable when compared to those of other materials.


1981 ◽  
Vol 5 ◽  
Author(s):  
C.B. Carter

ABSTRACTDislocations in low-angle tilt boundaries exhibit a wide variety of Burgers vector including a/2<112> a<001> and a<111>. The dislocations are usually dissociated: Shohkley, stair-rod and Frank partial dislocations may each be formed together with associated intrinsic and extrinsic stackingfaults. Dislocations in low-angle {111} twist boundaries are usually assumed to dissociated by a glide mechanism to give two types of extended nodes, known as P–type and K–type, which contain intrinsic and extrinsic stacking-faults respectively. It is shown that dissociation by climb actually occurs for both types of grain boundary.


2014 ◽  
Vol 778-780 ◽  
pp. 319-323
Author(s):  
Rii Hirano ◽  
Michio Tajima ◽  
Hidekazu Tsuchida ◽  
Kohei M. Itoh ◽  
Koji Maeda

Polarization characteristics of luminescence from partial dislocations (PDs) in 4H-SiC have been investigated by room-temperature photoluminescence (PL) imaging. After expansion of Shockley stacking faults by high-power laser irradiation, PL from PDs tilted by 6° from their Burgers vector (6°-PDs) was observed with almost the same PL peak energy as that of 30°-Si (g) PDs. The PL from the 30°-Si (g) and 6°-PDs which were mobile under illumination were both found to be polarized perpendicular to their dislocation lines. In contrast, the PL from immobile 30°-C(g) PDs was not polarized. The present results suggest that the carriers bound to the 30°-Si (g) and 6°-PDs have anisotropic wave functions and those bound to 30°-C(g)PDs have isotropic wave functions.


Sign in / Sign up

Export Citation Format

Share Document