Influence of iron content on cell parameters of rhombohedral La0.6Sr0.4Co1−yFeyO3

1996 ◽  
Vol 11 (3) ◽  
pp. 240-245 ◽  
Author(s):  
Johan E. ten Elshof ◽  
Jaap Boeijsma

Powder X-ray diffraction data are reported for La0.6Sr0.4Co1−yFeyO3 (y=0.1, 0.25, 0.4, 0.6, 0.8, 1.0). The powders were prepared by thermal decomposition of metal-containing complex solutions. All compositions have rhombohedral unit cells. In hexagonal setting, the cell parameters are a=5.4388 Å, c=13.2355 Å for y=0.1; a=5.4427 Å, c=13.2542 Å for y=0.25; a=5.4530 Å, c=13.2838 Å for y=0.4; a=5.4769 Å, c=13.3175 Å for y=0.6; a=5.5057 Å, c=13.3918 Å for y=0.8; and a=5.5278 Å, c=13.4368 Å for y=1.0. The space group is probably R3c (167) for all compositions. The observed trends in the change of the pseudocubic cell parameter ac with increasing iron content can be explained in terms of substitution of Co4+ by Fe4+ when y<0.4, and substitution of Co3+ by Fe3+ when y≳0.4.

1996 ◽  
Vol 11 (1) ◽  
pp. 28-30 ◽  
Author(s):  
Johan E. ten Elshof ◽  
Jaap Boeijsma

Powder X-ray diffraction data are reported for La1−xSrxCo0.8Fe0.2O3 (x=0.2, 0.4) and La0.8Ba0.2Co0.8Fe0.2O3. The powders were prepared by thermal decomposition of metal-containing complex solutions. All compositions have rhombohedral unit cells. In hexagonal setting, the cell parameters are a=5.4451(2) Å, c=13.2553(2) Å for La0.6Sr0.4Co0.8Fe0.2O3; a=5.4556(3) Å, c=13.1999(2) Å for La0.8Sr0.2Co0.8Fe0.2O3 and a=5.4795(1) Å, c=13.2983(5) Å for La0.8Ba0.2Co0.8Fe0.2O3. The space group is probably R3c (167) for all three compositions.


1987 ◽  
Vol 2 (4) ◽  
pp. 225-226
Author(s):  
Peter Bayliss ◽  
Slade St. J. Warne

AbstractMagnesium-chlorophoenicite may be differentiated from the Mn-analogue chlorophoenicite, because for magnesium-chlorophoenicite at 7Å, whereas for chlorophoenicite.In a review of the literature for the Mineral Powder Diffraction File by Bayliss et al. (1980), powder X-ray diffraction data could not be found of the mineral species magnesium-chlorophoenicite, (Mg,Mn)3Zn2(AsO4)(OH,O)6. Dunn (1981) states that the powder X-ray diffraction data of magnesium-chlorophoenicite is essentially identical to that of chlorophoenicite (Mn analogue) and confirms that the minerals are isostructural.With the crystal structure parameters determined by Moore (1968) for a Harvard University specimen from New Jersey of chlorophoenicite, a powder X-ray diffraction pattern was calculated with the programme of Langhof, Physikalische Chemie Institute, Darmstadt. The calculated pattern was used to correct and complete the indexing of the powder X-ray diffraction data of chlorophoenicite specimen ROM M15667 from Franklin, Sussex County, New Jersey, U.S.A. by the Royal Ontario Museum (PDF 25-1159). With the correctly indexed data of ROM M15667, the unitcell parameters were refined by least-squares analysis and are listed in Table 1.The most magnesium-rich magnesium-chlorophoenicite found in the literature is a description of Harvard University specimen 92803 from Franklin, Sussex County, New Jersey, U.S.A. by Dunn (1981), where Mg is slightly greater than Mn. A 114.6 mm Debye-Schemer film taken of HU92803 with Cu radiation and a Ni filter (CuKα = 1.5418Å) was obtained from Dr. P. Dunn and measured visually. The unit-cell parameters, which were refined by least-squares analysis starting from the unit-cell parameters of PDF 25-1159 in space group C2/m(#12), are listed in Table 1, and give F28 = 4.1(0.050,136) by the method of Smith & Snyder (1979).The hkl, dcalulated, dobserved and relative intensities (I/I1) of HU92803 are presented in Table 2. With the atomic positions and temperature factors of chlorophoenicite determined by Moore (1968), the Mn atomic positions occupied by 50% Mg and 50% Mn, and the unit-cell parameters of HU92803, a powder X-ray diffraction pattern was calculated and Icalculated is recorded in Table 2. A third powder X-ray diffraction pattern was calculated with the Mn atomic positions fully occupied by Mg. Because the atomic scattering factor of Mn is more than twice greater than Mg, chlorophoenicite may be differentiated from magnesium-chlorophoenicite based upon the calculated intensities of the first three reflections given in Table 3.Although the a, c and β unit-cell parameters of chlorphoenicite are similar to those of magnesium-chlorphoenicite, the b unit-cell parameter of chlorophoenicite is significantly greater than that of magnesium-chlorophoenicite (Table 1). The b unit-cell parameter represents the 0–0 distance of the Mn octahedra (Moore, 1968). Since the size of Mn is greater than that of Mg, chlorophoenicite may be differentiated from magnesium-chlorophoenicite based upon the b unit-cell parameter given in Table 1.American Museum of Natural History (New York, N.Y., U.S.A.) specimen 28942 from Sterling Hill, Ogdensburg, New Jersey is composed of willemite, haidingerite and magnesian chlorophoenicite. A spectrographic analysis of the magnesian chlorophoenicite shows As, Mg, Mn and Zn. Powder X-ray diffraction data (PDF 34-190) of the magnesian chlorophoenicite was collected by diffractometer with Cu radiation and a graphite 0002 monochromator (Kα1 = 1.5405) at a scanning speed of 0.125° 2θ per minute. The unit-cell parameters, which were refined by leastsquares analysis starting from the unit-cell parameters of PDF 25-1159, are given in Table 1. Specimen AM 28942 is called chlorophoenicite, because of its large b unit-cell parameter (Table 1), and the I/I1 of 25 for reflection 001 and of 50 for reflection 201 compared to the Icalculated in Table 3.


Author(s):  
Janice A. Frias ◽  
Brandon R. Goblirsch ◽  
Lawrence P. Wackett ◽  
Carrie M. Wilmot

OleC, a biosynthetic enzyme involved in microbial hydrocarbon biosynthesis, has been crystallized. Synchrotron X-ray diffraction data have been collected to 3.4 Å resolution. The crystals belonged to space groupP3121 orP3221, with unit-cell parametersa=b= 98.8,c= 141.0 Å.


1996 ◽  
Vol 11 (1) ◽  
pp. 31-34 ◽  
Author(s):  
Nicole M. L. N. P. Closset ◽  
René H. E. van Doorn ◽  
Henk Kruidhof ◽  
Jaap Boeijsma

The crystal structure of La1−xSrxCoO3−δ (0≤x≤0.6) has been studied, using powder X-Ray diffraction. The crystal structure shows a transition from rhombohedral distorted perovskite for LaCoO3−δ into cubic perovskite for La0.4Sr0.6CoO3−δ. The cubic unit cell parameter is ac=3.8342(1) Å for La0.4Sr0.6CoO3−δ, the space group probably being Pm3m. Using a hexagonal setting, the cell parameters for La0.5Sr0.5CoO3−δ, are a=5.4300(3) Å, c=13.2516(10) Å; a=5.4375(1) Å, c=13.2313(4) Å for La0.6Sr0.4CoO3−δ; a=5.4437(1) Å, c=13.2085(5) Å for La0.7Sr0.3CoO3−δ; a=5.4497(2) Å, c=13.1781(6) Å for La0.8Sr0.2CoO3−δ and a=5.4445(2) Å, c=13.0936(6) Å for LaCoO3−δ with the space group probably being R3c.


1994 ◽  
Vol 9 (3) ◽  
pp. 187-188 ◽  
Author(s):  
Hee-Lack Choi ◽  
Naoya Enomoto ◽  
Nobuo Ishizawa ◽  
Zenbe-e Nakagawa

X-ray powder diffraction data for Ti2O2(C2O4)(OH)2·H2O were obtained. The crystal system was determined to be orthorhombic with space group C2221. The unit cell parameters were refined to a = 1.0503(2) nm, b = 1.5509(3) nm, and c = 0.9700(1) nm.


2019 ◽  
Vol 65 (4 Jul-Aug) ◽  
pp. 360 ◽  
Author(s):  
G. E. Delgado ◽  
C. Rincón ◽  
G. Marroquin

The crystal structure of the ordered vacancy compound (OVC) Cu3In5Te9 was analyzed using powder X-ray diffraction data. Several structural models were derived from the structure of the Cu-poor Cu-In-Se compound b-Cu0.39In1.2Se2 by permuting the cations in the available site positions. The refinement of the best model by the Rietveld method in the tetragonal space group P2c (Nº 112), with unit cell parameters a = 6.1852(2) Å, c = 12.3633(9) Å, V = 472.98(4) Å3, led to Rp = 7.1 %, Rwp = 8.5 %, Rexp = 6.4 %, S = 1.3 for 162 independent reflections. This model has the following Wyckoff site atomic distribution: Cu1 in 2e (0,0,0); In1 in 2f (½,½,0), In2 in 2d (0,½,¼); Cu2-In3 in 2b (½,0,¼); in 2a (0,0,¼); Te in 8n (x,y,z).


2010 ◽  
Vol 25 (1) ◽  
pp. 72-74 ◽  
Author(s):  
H. A. Camargo ◽  
J. A. Henao ◽  
D. F. Amado ◽  
V. V. Kouznetsov

1-N-(4-pyridylmethyl)amino naphtalene was synthesized by means of a reaction of alpha-naphthylamine, 4-pyridylcarboxyaldehyde, in anhydrous ethanol to obtainN-(4-pyridylen)-alpha-naphthylamine and that was reduced with NaBH4 to produce the wanted compound. The X-ray powder diffraction pattern for the new compound 1-N-(4-pyrydylmethyl)amino naphtalene was obtained. This compound crystallizes in a monoclinic system with refined unit cell parameters a=10.375(5) Å, b=17.665(6) Å, c=5.566(2) Å, β=100.11(3), and V=1004.3(5) Å3, with space group P2/m (No. 10).


1997 ◽  
Vol 12 (2) ◽  
pp. 99-102 ◽  
Author(s):  
Paolo Ballirano ◽  
Adriana Maras ◽  
Peter R. Buseck ◽  
Ann M. Yates

New powder X-ray diffraction data of davyne, a member of the cancrinite group of minerals, were collected using a rotating anode diffractometer: the hexagonal cell parameters are a=12.6711(3) Å, c=5.3278(2) Å, volume 740.82(4) Å3 (space group P63). The strongest lines are: 3.658(100), 4.790(73), 3.272(70), 2.112(48), 2.438(22), 2.663(19), 1.781(19), and 4.147(17). The new data provide quantitative intensities improved precision in d-spacings and cover an increased 2θ angular range with respect to PDF 20-379. Measured intensities and a simulated pattern are reported together with crystal-chemical considerations.


2002 ◽  
Vol 17 (1) ◽  
pp. 44-47
Author(s):  
Yu PuLan ◽  
Ding Shuang ◽  
Qiao YuanYuan ◽  
Yao XinKan ◽  
Liu Chong ◽  
...  

Two compounds have been studied by means of powder diffraction and their unit cell parameters are reported. The monoclinic cell parameters for dimethylgermanyl-bridged bis cyclopentadienyl tetracarbonyl diruthenium are a=11.03(2) Å, b=13.65(2) Å, c=11.609(2) Å, β=105.81(1)°, Z=4, space group P21/n (No. 14), Dx=2.135 mg/m3. The monoclinic cell parameters for λ-dimethylsilyl-dicyclopentadienyl-π, π′-tetracarbonyl diruthenium, are a=11.113(3) Å, b=13.60(1) Å, c=11.674(7) Å, and β=106.00(3)°, Z=4, space group P21/n (No. 14), and Dx=1.946 mg/m3. The cells found for the two compounds are in good agreement with those obtained from single crystal X-ray diffractometry.


1998 ◽  
Vol 13 (3) ◽  
pp. 134-135
Author(s):  
Fabrice Goubard ◽  
Samuel Llorente ◽  
Valérie Delobbe ◽  
Daniel Bizot ◽  
Jean Chassaing

X-ray diffraction experiments performed on the compounds FeIINbIVF6 and CoIINbIVF6 have shown that they crystallize in the rhombohedral system, space group R3¯ with a cationic ordering. Unit cell parameters were determined: a=5.4201(8) Å, c=14.072(2) Å, V=357.8(1) Å, Z=3 for FeNbF6, and a=5.351(2) Å, c=13.960(6) Å, V=346.2(2) Å, Z=3 for CoNbF6. Synthesis and powder diffraction data are reported.


Sign in / Sign up

Export Citation Format

Share Document