Powder X-Ray Diffraction Data for Ca2Bi2O5and C4Bi6O13

1992 ◽  
Vol 7 (2) ◽  
pp. 109-111 ◽  
Author(s):  
C.J. Rawn ◽  
R.S. Roth ◽  
H.F. McMurdie

AbstractSingle crystals and powder samples of Ca2Bi5O5and Ca4Bi6O13have been synthesized and studied using single crystal X-ray diffraction as well as X-ray and neutron powder diffraction. Unit cell dimensions were calculated using a least squares analysis that refined to a δ2θof no more than 0.03°. A triclinic cell was found with space group , a = 10.1222(7), b = 10.1466(6), c = 10.4833(7) Å. α= 116.912(5), β= 107.135(6) and γ= 92.939(6)°, Z = 6 for the Ca2Bi2O5compound. An orthorhombic cell was found with space group C2mm, a = 17.3795(5), b = 5.9419(2) and c = 7.2306(2) Å, Z = 2 for the Ca4Bi6O13compound.

1994 ◽  
Vol 9 (1) ◽  
pp. 56-62 ◽  
Author(s):  
C. G. Lindsay ◽  
C. J. Rawn ◽  
R. S. Roth

Single crystals and powder samples of Ba4ZnTi11O27 and Ba2ZnTi5O13 have been synthesized and studied using single-crystal X-ray precession photographs and X-ray powder diffraction. Unit cell dimensions were calculated from a least-squares refinement with a final maximum Δ2θ of 0.05°. Both phases were found to have monoclinic cells, space group C2/m. The refined lattice parameters for the Ba4ZnTi11O27 compound are a= 19.8687(8) Å, b=11.4674(5) Å, c=9.9184(4) Å, β= 109.223(4)°, and Z=4. The refined lattice parameters for the Ba2ZnTi5O13 compound are a= 15.2822(7) Å, b=3.8977(1) Å, c=9.1398(3) Å, β=98.769(4)°, and Z=2.


1996 ◽  
Vol 11 (4) ◽  
pp. 301-304
Author(s):  
Héctor Novoa de Armas ◽  
Rolando González Hernández ◽  
José Antonio Henao Martínez ◽  
Ramón Poméz Hernández

p-nitrophenol, C6H5NO3, and disophenol, C6H3I2NO3, have been investigated by means of X-ray powder diffraction. The unit cell dimensions were determined from diffractometer methods, using monochromatic CuKα1 radiation, and evaluated by indexing programs. The monoclinic cell found for p-nitrophenol was a=6.159(2) Å, b=8.890(2) Å, c=11.770(2) Å, β=103.04(2)°, Z=4, space group P21 or P2l/m, Dx=1.469 Mg/m3. The monoclinic cell found for disophenol has the dimensions a=8.886(1) Å, b=14.088(2) Å, c=8.521(1) Å, β=91.11(1)°, Z=4, space group P2, P2, Pm or P2/m, Dx=2.438 Mg/m3.


1995 ◽  
Vol 10 (4) ◽  
pp. 282-287 ◽  
Author(s):  
W. Pitschke ◽  
G. Krabbes ◽  
N. Mattern

Indexed X-ray powder diffraction data are reported for the semiconducting compound Ba2Cl2Cu3O4. The structure was refined by the Rietveid technique on the basis of the space group I4/mmm. Refined unit cell dimensions are a = 5.5156(1) Å, c = 13.8221(3) Å, V = 420.49 Å3Dx = 4.74 g/cm3, F30 = 129(0.0075,30), M20 = 121, Rp = 6.58, Rwp = 8.66, and RB = 4.49.


1997 ◽  
Vol 12 (2) ◽  
pp. 96-98 ◽  
Author(s):  
J. Málek ◽  
L. Beneš ◽  
T. Mitsuhashi

Indexed X-ray powder diffraction data are reported for the low temperature tetragonal ZrO2 obtained by crystallization of zirconia gel. The structure was refined by the Rietveld technique on the basis of space group P42/nmc. Refined unit cell dimensions are a = 3.5984(5) Å, c = 5.152(1) Å, V = 66.71 Å3, Dx=6.135 g/cm3, F18=62 (0.012, 24), RP=8.99, Rwp=11.48, RB=3.13.


1963 ◽  
Vol 41 (2) ◽  
pp. 219-223 ◽  
Author(s):  
D. W. Larson ◽  
A. B. VanCleave

X-Ray powder diffraction patterns have been recorded for the alkali dithionates and for barium and ammonium dithionate. The patterns have been indexed and unit cell dimensions determined for lithium dithionate dihydrate, sodium dithionate (anhydrous), and rubidium dithionate. Previously determined cell dimensions have been confirmed in other cases.


2009 ◽  
Vol 24 (1) ◽  
pp. 53-55
Author(s):  
M. Alizadeh ◽  
K. Ahmadi ◽  
A. Maghsoudipour

X-ray powder diffraction data for three new bismuth yttrium ytterbium oxide compounds synthesized by solid-state reaction method are reported. The unit-cell dimensions were determined from X-ray diffraction method using Cu Kα radiation and evaluated by indexing programs. The cubic δ-Bi2O3 phase was identified to be the sole crystalline phase in Bi0.82Y0.09Yb0.09O1.5, Bi0.82Y0.12Yb0.06O1.5, and Bi0.82Y0.06Yb0.12O1.5 with lattice constants of a=5.5110(3), 5.5154(2), and 5.5113(2) Å, respectively.


2006 ◽  
Vol 21 (3) ◽  
pp. 236-237
Author(s):  
S. Belkhiri ◽  
D. Mezaoui ◽  
H. Rebbah ◽  
S. Ouhenia ◽  
M. A. Belkhir

K3Nb3WO9(AsO4)2 has been investigated by means of X-ray powder diffraction. Powder diffraction data were obtained by conventional diffractometer with Kα radiation. Unit-cell dimensions were determined by an indexing program based on variation of parameters by successive dichotomies. An orthorhombic cell (space group Pnma) was found with a=15.001 (1) Å, b=14.814(1) Å, c=7.2374 (8) Å, and V=1608.4 (4) A3. The figures of merit were calculated to be M(20)=35.9 and F(20)=70.8 (0.0055,51).


2006 ◽  
Vol 62 (3) ◽  
pp. 384-396 ◽  
Author(s):  
Paris W. Barnes ◽  
Michael W. Lufaso ◽  
Patrick M. Woodward

The room-temperature crystal structures of six A 2 M 3+ M 5+O6 ordered perovskites have been determined from neutron and X-ray powder diffraction data. Ba2YNbO6 adopts the aristotype high-symmetry cubic structure (space group Fm\overline 3m, Z = 4). The symmetries of the remaining five compounds were lowered by octahedral tilting distortions. Out-of-phase rotations of the octahedra about the c axis were observed in Sr2CrTaO6 and Sr2GaTaO6, which lowers the symmetry to tetragonal (space group = I4/m, Z = 2, Glazer tilt system = a 0 a 0 c −). Octahedral tilting analogous to that seen in GdFeO3 occurs in Sr2ScNbO6, Ca2AlNbO6 and Ca2CrTaO6, which lowers the symmetry to monoclinic (space group P21/n, Z = 2, Glazer tilt system = a − a − c +). The Sr2 MTaO6 (M = Cr, Ga, Sc) compounds have unit-cell dimensions that are highly pseudo-cubic. Ca2AlNbO6 and Ca2CrTaO6 have unit-cell dimensions that are strongly pseudo-orthorhombic. This high degree of pseudosymmetry complicates the space-group assignment and structure determination. The space-group symmetries, unit-cell dimensions and cation ordering characteristics of an additional 13 compositions, as determined from X-ray powder diffraction data, are also reported. An analysis of the crystal structures of 32 A 2 MTaO6 and A 2 MNbO6 perovskites shows that in general the octahedral tilt system strongly correlates with the tolerance factor.


1999 ◽  
Vol 14 (3) ◽  
pp. 213-218 ◽  
Author(s):  
W. Pitschke ◽  
K. Koumoto

Indexed X-ray powder diffraction data are reported for the homologous compound (ZnO)5(In1−xYx)2O3. The structures of (ZnO)5In2O3 and of (ZnO)5(In1−xYx)2O3 were refined by the Rietveld technique on the basis of the space group R3¯m. Refined unit cell dimensions are a=3.3285(1) Å, c=58.127(2) Å, V=557.71(3) Å3, Dx=6.11 g/cm3, Rwp=10.52, RB=8.56 for (ZnO)5In2O3, and a=3.3505(1) Å, c=57.863(1) Å, V=562.53(2) Å3, Dx=5.97 g/cm3, Rwp=9.05, RB=6.94 for (ZnO)5(In0.8Y0.2)2O3. The structure of (ZnO)5In2O3 was shown to be isostructural with (ZnO)5LuFeO3. Y3+ ions were determined to be arranged at the 3a-metal sites substituting for In3+ ions.


1996 ◽  
Vol 11 (1) ◽  
pp. 26-27 ◽  
Author(s):  
Irena Georgieva ◽  
Ivan Ivanov ◽  
Ognyan Petrov

A new compound—Ba3MnSi2O8 in the system BaO–MnO–SiO2 was synthesized and studied by powder X-ray diffraction. The compound is hexagonal, space group—P6/mmm, a=5.67077 Å, c=7.30529 Å, Z=1, Dx=5.353. The obtained powder X-ray diffractometry (XRD) data were interpreted by the Powder Data Interpretation Package.


Sign in / Sign up

Export Citation Format

Share Document