X-ray diffraction study and powder patterns of double-perovskites Sr2RSbO6 (R = Pr, Nd, Sm, Eu, Gd, Dy, Ho, Y, Er, Tm, Yb, and Lu)

2014 ◽  
Vol 29 (4) ◽  
pp. 371-378 ◽  
Author(s):  
W. Wong-Ng ◽  
J. A. Kaduk ◽  
M. Luong ◽  
Q. Huang

The X-ray diffraction powder patterns were prepared and the crystal structures were refined for the double-perovskite series of compounds, Sr2RSbO6 (R = Pr, Nd, Sm, Eu, Gd, Dy, Ho, Y, Er, Tm, Yb, and Lu). We found the structures of the entire Sr2RSbO6 series to be monoclinic with space group P21/n (no. 14), and Z = 2. From R = Lu to Pr, the lattice parameters “a” range from 5.7779(2) to 5.879 05(8) Å, “b” range from 5.7888(2) to 5.969 52(9) Å, “c” range from 8.1767(3) to 8.369 20(12) Å, “β” range from 90.112(2)° to 90.313(1)°, and “V” range from 273.483(4) to 293.714(7) Å3. These lattice parameters follow the well-established trend of “lanthanide contraction”. The R3+ and Sb5+ ions are found to be fully ordered in the double-perovskite arrangement of alternating corner-sharing octahedra in a zigzag fashion. The SrO12, RO6, and SbO6 cages are all found to have distorted coordination environments. Powder diffraction patterns of these compounds have been prepared, submitted, and published in the Powder Diffraction File.

1998 ◽  
Vol 13 (4) ◽  
pp. 232-240 ◽  
Author(s):  
W. Wong-Ng ◽  
J. A. Kaduk ◽  
W. Greenwood

The crystal structure of the solid solution alkaline earth plumbate phase Sr4−xCaxPb2O8 was investigated using the X-ray Rietveld technique for x=1, 2, and 3. The lattice parameters a, b, c, and V were found to decrease linearly as the Sr at site 4h was replaced by Ca. The structure features chains of edge-sharing PbO6 octahedra, linked by seven-coordinated (Ca/Sr)–O monocapped trigonal prisms. The structure is similar to that of Pb3O4, which can be reformulated as Pb2IIPbIVO4. X-ray diffraction patterns for the solid solution members SrCa3Pb2O8, Sr2Ca2Pb2O8, and Sr3CaPb2O8 were prepared for inclusion in the Powder Diffraction File.


2015 ◽  
Vol 30 (2) ◽  
pp. 139-148 ◽  
Author(s):  
W. Wong-Ng ◽  
G. Liu ◽  
Y. Yan ◽  
K. R. Talley ◽  
J. A. Kaduk

X-ray structural characterization and X-ray reference powder patterns have been determined for two series of iron- and cobalt-containing layered compounds (BaxSr1−x)2Co2Fe12O22 (x = 0.2, 0.4, 0.6, 0.8) and (BaxSr1−x)Co2Fe16O27 (x = 0.2, 0.4, 0.6, 0.8). The (BaxSr1−x)2Co2Fe12O22 series of compounds crystallized in the space group R$\bar 3$m (No. 166), with Z = 3. The structure is essentially that of the Y-type hexagonal ferrite, BaM2+Fe63+O11. The lattice parameters range from a = 5.859 15(8) to 5.843 72(8) Å, and c = 43.4975(9) to 43.3516(9) Å for x = 0.2 to 0.8, respectively. The (BaxSr1−x)Co2Fe16O27 series (W-type hexagonal ferrite) crystallized in the space group P63/mmc (No. 194) and Z = 2. The lattice parameters range from a = 5.902 05(12) to 5.8979(2) Å and c = 32.9002(10) to 32.8110(13) Å for x = 0.2 to 0.8. Results of measurements of the Seebeck coefficient and resistivity of these two sets of samples indicated that they are insulators. Powder X-ray diffraction patterns of these two series of compounds have been submitted to be included in the Powder Diffraction File.


1995 ◽  
Vol 10 (1) ◽  
pp. 56-66 ◽  
Author(s):  
Winnie Wong-Ng

A comprehensive review of phases found in the Sr–Nd–Cu–O system which contains the high Tc superconductor phase Sr1−xNdxCuO2 has been prepared. This paper summarizes the crystal structures reported in the literature and the X-ray powder diffraction patterns reported in the ICDD Powder Diffraction File (PDF). In order to supplement the PDF with new patterns, calculated X-ray powder diffraction patterns generated from reported structures are provided for five ternary oxides: Sr0.86Nd0.14CuO2, SrNdCuO3.5, Sr6Nd3Cu6O17, Sr2NdCu2O5.66, and Sr1.2Nd1.8Cu2O6.


2018 ◽  
Vol 33 (4) ◽  
pp. 279-286
Author(s):  
W. Wong-Ng ◽  
J. A. Kaduk ◽  
S. H. Lapidus ◽  
L. Ribaud ◽  
S. P. Diwanji

A series of double-perovskite oxides, Sr2RNbO6 (R = Sm, Gd, Dy, Ho, Y, Tm, and Lu) were prepared and their crystal structure and powder diffraction reference patterns were determined using the Rietveld analysis technique. The crystal structure of each of the Sr2RNbO6 phase is reported in this paper. The R = Gd, Ho, and Lu samples were studied using synchrotron radiation, while R = Sm, Dy, Y, and Tm samples were studied using laboratory X-ray diffraction. Members of Sr2RNbO6 are monoclinic with a space group of P21/n and are isostructural with each other. Following the trend of “lanthanide contraction”, from R = Sm to Lu, the lattice parameters “a” of these compounds decreases from 5.84672(10) to 5.78100(3) Å, b from 5.93192(13) to 5.80977(3) Å, c from 8.3142(2) to 8.18957(5) Å, and V decreases from 288.355(11) to 275.057(2) Å3. In this double-perovskite series, the R3+ and Nb5+ ions are structurally ordered. The average Nb–O bond length is nearly constant, while the average R–O bond length decreases with the decreasing ionic radius of R3+. Powder diffraction patterns for these compounds have been submitted to the Powder Diffraction File (PDF).


1999 ◽  
Vol 14 (3) ◽  
pp. 219-221 ◽  
Author(s):  
V. Venegas ◽  
A. Gómez ◽  
E. Reguera

The crystal structure of disilver(1+) pentacyanonitrosylferrate(2−) was studied by X-ray powder diffraction. IR and Mössbauer spectroscopies, thermogravimetric analysis and density measurements were also carried out. This compound is monoclinic, and its lattice parameters are: a=10.986(3) Å, b=6.4080(10) Å, c=7.4545(19) Å, α=δ=90°, β=102.54°(2).


1990 ◽  
Vol 34 ◽  
pp. 369-376
Author(s):  
G. J. McCarthy ◽  
J. M. Holzer ◽  
W. M. Syvinski ◽  
K. J. Martin ◽  
R. G. Garvey

AbstractProcedures and tools for evaluation of reference x-ray powder patterns in the JCPDSICDD Powder Diffraction File are illustrated by a review of air-stable binary oxides. The reference patterns are evaluated using an available microcomputer version of the NBS*A1DS83 editorial program and PDF patterns retrieved directly from the CD-ROM in the program's input format. The patterns are compared to calculated and experimental diffractograms. The majority of the oxide patterns have been found to be in good agreement with the calculated and observed diffractograms, but are often missing some weak reflections routinely observed with a modern diffractometer. These weak reflections are added to the PDF pattern. For the remainder of the phases, patterns are redetermined.


Author(s):  
Michel Fleck ◽  
Ekkehart Tillmanns ◽  
Ladislav Bohatý ◽  
Peter Held

AbstractThe crystal structures of eight different L-malates have been determined and refined from single-crystal X-ray diffraction data. The compounds are the monoclinic (space groupIn addition, for all the compounds, powder diffraction data were collected, analysed and submitted to the powder diffraction file (PDF).


1987 ◽  
Vol 2 (3) ◽  
pp. 176-179 ◽  
Author(s):  
G. Wilson ◽  
F. P. Glasser

AbstractA systematic survey of phase formation in the Na2O-ZrO2-SiO2 system has revealed inconsistencies in the number and identity of ternary phases, and of their X-ray powder data. The phases Na2ZrSiO5, Na4Zr2Si3O12, Na2ZrSi2O7 and Na2ZrSi4O11 were prepared by solid-state reaction and their experimental X-ray diffraction patterns measured. Calculated X-ray diffraction patterns were generated by computer, using published crystallographic data, and critically compared with the experimentally observed values. The unit-cell constants were redefined to a greater accuracy than the presently accepted values published in the Powder Diffraction File. Only Na4Zr2Si3O12 produced an X-ray diffraction pattern which agreed with that previously published; those from the other phases were significantly different in both the intensities and positions of the reflections. Data for synthetic Na2ZrSi4O11 identical to the mineral vlasovite are reported.


1991 ◽  
pp. 369-376
Author(s):  
G. J. McCarthy ◽  
J. M. Holzer ◽  
W. M. Syvinski ◽  
K. J. Martin ◽  
R. G. Garvey

1999 ◽  
Vol 14 (2) ◽  
pp. 145-146
Author(s):  
Liangqin Nong ◽  
Lingmin Zeng

An X-ray diffraction pattern for ErNi2Ge2 at room temperature is reported. ErNi2Ge2 is tetragonal with lattice parameters a=4.0191(2) Å, c=9.7643(2) Å, space group I4/mmm, and Z=2. The lattice parameters derived from Rietveld analysis agree well with the results of a least-squares refinement.


Sign in / Sign up

Export Citation Format

Share Document