Crystal structures and reference X-ray powder diffraction patterns of Sr4−xCaxPb2O8 (x=1,2,3)

1998 ◽  
Vol 13 (4) ◽  
pp. 232-240 ◽  
Author(s):  
W. Wong-Ng ◽  
J. A. Kaduk ◽  
W. Greenwood

The crystal structure of the solid solution alkaline earth plumbate phase Sr4−xCaxPb2O8 was investigated using the X-ray Rietveld technique for x=1, 2, and 3. The lattice parameters a, b, c, and V were found to decrease linearly as the Sr at site 4h was replaced by Ca. The structure features chains of edge-sharing PbO6 octahedra, linked by seven-coordinated (Ca/Sr)–O monocapped trigonal prisms. The structure is similar to that of Pb3O4, which can be reformulated as Pb2IIPbIVO4. X-ray diffraction patterns for the solid solution members SrCa3Pb2O8, Sr2Ca2Pb2O8, and Sr3CaPb2O8 were prepared for inclusion in the Powder Diffraction File.

2014 ◽  
Vol 29 (4) ◽  
pp. 371-378 ◽  
Author(s):  
W. Wong-Ng ◽  
J. A. Kaduk ◽  
M. Luong ◽  
Q. Huang

The X-ray diffraction powder patterns were prepared and the crystal structures were refined for the double-perovskite series of compounds, Sr2RSbO6 (R = Pr, Nd, Sm, Eu, Gd, Dy, Ho, Y, Er, Tm, Yb, and Lu). We found the structures of the entire Sr2RSbO6 series to be monoclinic with space group P21/n (no. 14), and Z = 2. From R = Lu to Pr, the lattice parameters “a” range from 5.7779(2) to 5.879 05(8) Å, “b” range from 5.7888(2) to 5.969 52(9) Å, “c” range from 8.1767(3) to 8.369 20(12) Å, “β” range from 90.112(2)° to 90.313(1)°, and “V” range from 273.483(4) to 293.714(7) Å3. These lattice parameters follow the well-established trend of “lanthanide contraction”. The R3+ and Sb5+ ions are found to be fully ordered in the double-perovskite arrangement of alternating corner-sharing octahedra in a zigzag fashion. The SrO12, RO6, and SbO6 cages are all found to have distorted coordination environments. Powder diffraction patterns of these compounds have been prepared, submitted, and published in the Powder Diffraction File.


2015 ◽  
Vol 30 (2) ◽  
pp. 139-148 ◽  
Author(s):  
W. Wong-Ng ◽  
G. Liu ◽  
Y. Yan ◽  
K. R. Talley ◽  
J. A. Kaduk

X-ray structural characterization and X-ray reference powder patterns have been determined for two series of iron- and cobalt-containing layered compounds (BaxSr1−x)2Co2Fe12O22 (x = 0.2, 0.4, 0.6, 0.8) and (BaxSr1−x)Co2Fe16O27 (x = 0.2, 0.4, 0.6, 0.8). The (BaxSr1−x)2Co2Fe12O22 series of compounds crystallized in the space group R$\bar 3$m (No. 166), with Z = 3. The structure is essentially that of the Y-type hexagonal ferrite, BaM2+Fe63+O11. The lattice parameters range from a = 5.859 15(8) to 5.843 72(8) Å, and c = 43.4975(9) to 43.3516(9) Å for x = 0.2 to 0.8, respectively. The (BaxSr1−x)Co2Fe16O27 series (W-type hexagonal ferrite) crystallized in the space group P63/mmc (No. 194) and Z = 2. The lattice parameters range from a = 5.902 05(12) to 5.8979(2) Å and c = 32.9002(10) to 32.8110(13) Å for x = 0.2 to 0.8. Results of measurements of the Seebeck coefficient and resistivity of these two sets of samples indicated that they are insulators. Powder X-ray diffraction patterns of these two series of compounds have been submitted to be included in the Powder Diffraction File.


1995 ◽  
Vol 10 (1) ◽  
pp. 56-66 ◽  
Author(s):  
Winnie Wong-Ng

A comprehensive review of phases found in the Sr–Nd–Cu–O system which contains the high Tc superconductor phase Sr1−xNdxCuO2 has been prepared. This paper summarizes the crystal structures reported in the literature and the X-ray powder diffraction patterns reported in the ICDD Powder Diffraction File (PDF). In order to supplement the PDF with new patterns, calculated X-ray powder diffraction patterns generated from reported structures are provided for five ternary oxides: Sr0.86Nd0.14CuO2, SrNdCuO3.5, Sr6Nd3Cu6O17, Sr2NdCu2O5.66, and Sr1.2Nd1.8Cu2O6.


2015 ◽  
Vol 30 (3) ◽  
pp. 256-262
Author(s):  
W. Wong-Ng ◽  
G. Liu ◽  
J. A. Kaduk

X-ray reference powder patterns and crystal structures have been determined for a series of titanium- and cobalt-containing layered alkaline-earth compounds with nominal formula (BaxSr1−x)Ti6Co6O19 (x = 0.2, 0.4, 0.6, 0.8). Structural isomorphism of the title compounds with the hexagonal ferrite BaFe12O19 and magnetoplumbite (PbFe12O19), was confirmed. The (BaxSr1−x)Ti6Co6O19 series crystallize in the space group of P63/mmc (No. 194) and Z = 2. The lattice parameters range from a = 5.90729(6) Å, c = 23.2378(3) Å, and V = 702.27(2) Å3 for x = 0.2 to a = 5.914 93(9), c = 23.3391(5) Å, and V = 707.15(2) Å3 with x = 0.8. The structure consists of alternating spinel S-block and R-blocks. The tetrahedral sites within the spinel S-blocks are occupied with only Co2+, while Ti4+ is mainly located in the octahedral sites of the spinel S-blocks and in the face-sharing octahedral site of the R-blocks. A bipyramidal mixed Co/Ti site was confirmed in the R-block of the structure. Powder X-ray diffraction patterns of this series of compounds have been submitted to be included in the Powder Diffraction File.


2018 ◽  
Vol 33 (4) ◽  
pp. 279-286
Author(s):  
W. Wong-Ng ◽  
J. A. Kaduk ◽  
S. H. Lapidus ◽  
L. Ribaud ◽  
S. P. Diwanji

A series of double-perovskite oxides, Sr2RNbO6 (R = Sm, Gd, Dy, Ho, Y, Tm, and Lu) were prepared and their crystal structure and powder diffraction reference patterns were determined using the Rietveld analysis technique. The crystal structure of each of the Sr2RNbO6 phase is reported in this paper. The R = Gd, Ho, and Lu samples were studied using synchrotron radiation, while R = Sm, Dy, Y, and Tm samples were studied using laboratory X-ray diffraction. Members of Sr2RNbO6 are monoclinic with a space group of P21/n and are isostructural with each other. Following the trend of “lanthanide contraction”, from R = Sm to Lu, the lattice parameters “a” of these compounds decreases from 5.84672(10) to 5.78100(3) Å, b from 5.93192(13) to 5.80977(3) Å, c from 8.3142(2) to 8.18957(5) Å, and V decreases from 288.355(11) to 275.057(2) Å3. In this double-perovskite series, the R3+ and Nb5+ ions are structurally ordered. The average Nb–O bond length is nearly constant, while the average R–O bond length decreases with the decreasing ionic radius of R3+. Powder diffraction patterns for these compounds have been submitted to the Powder Diffraction File (PDF).


2014 ◽  
Vol 70 (a1) ◽  
pp. C1560-C1560
Author(s):  
Fumiko Kimura ◽  
Wataru Oshima ◽  
Hiroko Matsumoto ◽  
Hidehiro Uekusa ◽  
Kazuaki Aburaya ◽  
...  

In pharmaceutical sciences, the crystal structure is of primary importance because it influences drug efficacy. Due to difficulties of growing a large single crystal suitable for the single crystal X-ray diffraction analysis, powder diffraction method is widely used. In powder method, two-dimensional diffraction information is projected onto one dimension, which impairs the accuracy of the resulting crystal structure. To overcome this problem, we recently proposed a novel method of fabricating a magnetically oriented microcrystal array (MOMA), a composite in which microcrystals are aligned three-dimensionally in a polymer matrix. The X-ray diffraction of the MOMA is equivalent to that of the corresponding large single crystal, enabling the determination of the crystal lattice parameters and crystal structure of the embedded microcrytals.[1-3] Because we make use of the diamagnetic anisotropy of crystal, those crystals that exhibit small magnetic anisotropy do not take sufficient three-dimensional alignment. However, even for these crystals that only align uniaxially, the determination of the crystal lattice parameters can be easily made compared with the determination by powder diffraction pattern. Once these parameters are determined, crystal structure can be determined by X-ray powder diffraction method. In this paper, we demonstrate possibility of the MOMA method to assist the structure analysis through X-ray powder and single crystal diffraction methods. We applied the MOMA method to various microcrystalline powders including L-alanine, 1,3,5-triphenyl benzene, and cellobiose. The obtained MOMAs exhibited well-resolved diffraction spots, and we succeeded in determination of the crystal lattice parameters and crystal structure analysis.


1999 ◽  
Vol 14 (3) ◽  
pp. 219-221 ◽  
Author(s):  
V. Venegas ◽  
A. Gómez ◽  
E. Reguera

The crystal structure of disilver(1+) pentacyanonitrosylferrate(2−) was studied by X-ray powder diffraction. IR and Mössbauer spectroscopies, thermogravimetric analysis and density measurements were also carried out. This compound is monoclinic, and its lattice parameters are: a=10.986(3) Å, b=6.4080(10) Å, c=7.4545(19) Å, α=δ=90°, β=102.54°(2).


1985 ◽  
Vol 49 (353) ◽  
pp. 547-554 ◽  
Author(s):  
M. Shahmiri ◽  
S. Murphy ◽  
D. J. Vaughan

AbstractThe crystal structure and compositional limits of the ternary compound Pt2FeCu (tulameenite), formed either by quenching from above the critical temperature of 1178°C or by slow cooling, have been investigated using X-ray diffraction, transmission electron microscopy, differential thermal analysis and electron probe microanalysis.The crystal structure of Pt2FeCu, established using electron density maps constructed from the measured and calculated intensities of X-ray diffraction patterns of powdered specimens, has the (000) and (½½0) lattice sites occupied by Pt atoms and the (½0½) and (0½½) sites occupied by either Cu or Fe atoms in a random manner. The resulting face-centred tetragonal structure undergoes a disordering transformation at the critical temperature to a postulated non-quenchable face-centred cubic structure. Stresses on quenching, arising from the ordering reaction, are relieved by twinning along {101} planes or by recrystallization along with deformation twinning; always involving grain boundary fracturing.Phase relations in the system Pt-Fe-Cu have been investigated through the construction of isothermal sections at 1000 and 600°C. At 1000°C there is an extensive single phase region of solid solution around Pt2FeCu and extending to the binary composition PtFe. At 600°C the composition Pt2FeCu lies just outside this now reduced area of solid solution in a two-phase field. Comparison of the experimental results with data for tulameenite suggests that some observed compositions may be metastably preserved. The occurrence of fine veinlets of silicate or other gangue minerals in tulameenite is suggested to result from grain boundary fracturing on cooling below the critical temperature of 1178°C and to be evidence of a magmatic origin.


1990 ◽  
Vol 34 ◽  
pp. 369-376
Author(s):  
G. J. McCarthy ◽  
J. M. Holzer ◽  
W. M. Syvinski ◽  
K. J. Martin ◽  
R. G. Garvey

AbstractProcedures and tools for evaluation of reference x-ray powder patterns in the JCPDSICDD Powder Diffraction File are illustrated by a review of air-stable binary oxides. The reference patterns are evaluated using an available microcomputer version of the NBS*A1DS83 editorial program and PDF patterns retrieved directly from the CD-ROM in the program's input format. The patterns are compared to calculated and experimental diffractograms. The majority of the oxide patterns have been found to be in good agreement with the calculated and observed diffractograms, but are often missing some weak reflections routinely observed with a modern diffractometer. These weak reflections are added to the PDF pattern. For the remainder of the phases, patterns are redetermined.


2014 ◽  
Vol 950 ◽  
pp. 48-52
Author(s):  
De Gui Li ◽  
Ming Qin ◽  
Liu Qing Liang ◽  
Zhao Lu ◽  
Shu Hui Liu ◽  
...  

The Al2M3Y(M=Cu, Ni) compound was synthesized by arc melting under argon atmosphere. The high-quality powder X-ray diffraction data of Al2M3Y have been presented. The refinement of the X-ray diffraction patterns for the Al2M3Y compound show that the Al2M3Y has hexagonal structure, space groupP6/mmm(No.191), with a = b = 5.1618(2) Å, c = 4.1434(1) Å,V= 95.6 Å3,Z= 1,ڑx= 5.7922 g/cm3,F30= 155.5(0.0057, 34), RIR = 2.31 for Al2Cu3Y, and with a = b = 5.0399(1) Å, c = 4.0726(1) Å,V= 89.59 Å3,Z= 1,ڑx= 5.9118 g/cm3,F30= 135.7(0.0072, 30), RIR = 2.54 for Al2Ni3Y.


Sign in / Sign up

Export Citation Format

Share Document