debye temperature
Recently Published Documents


TOTAL DOCUMENTS

727
(FIVE YEARS 72)

H-INDEX

36
(FIVE YEARS 3)

2D Materials ◽  
2021 ◽  
Author(s):  
Archit Dhingra ◽  
Alexey Lipatov ◽  
Haidong Lu ◽  
Katerina Chagoya ◽  
Joseph Dalton ◽  
...  

Abstract GeI2 is an interesting two-dimensional (2D) wide-band gap semiconductor because of diminished edge scattering due to an absence of dangling bonds. Angle-resolved x-ray photoemission spectroscopy (ARXPS) indicates a germanium rich surface, and a surface to bulk core-level shift of 1.8 eV in binding energy, between the surface and bulk components of the Ge 2p3/2 core-level, making clear that the surface is different from the bulk. Temperature dependent studies indicate an effective Debye temperature (θD ) of 186 ± 18 K for the germanium x-ray photoemission spectroscopy (XPS) feature associated with the surface. These measurements also suggest an unusually high effective Debye temperature for iodine (587 ± 31 K), implying that iodine is present in the bulk of the material, and not the surface. From optical absorbance, GeI2 is seen to have an indirect (direct) optical band gap of 2.60 (2.8) ± 0.02 (0.1) eV, consistent with the expectations. Temperature dependent magnetometry indicates that GeI2 is moment paramagnetic at low temperatures (close to 4 K) and shows a diminishing saturation moment at high temperatures (close to 300 K and above).


2021 ◽  
pp. 118382
Author(s):  
Ramakant ◽  
Subhash Chandra Shrivastava ◽  
Vinay Sanguri ◽  
Shekhar Srivastava ◽  
JD Pandey

2021 ◽  
Vol 574 ◽  
pp. 126327
Author(s):  
Akira Yoshiasa ◽  
Makoto Tokuda ◽  
Ginga Kitahara ◽  
Kohei Unoki ◽  
Hiroshi Isobe ◽  
...  

2021 ◽  
Vol 130 (2) ◽  
pp. 025304
Author(s):  
Archit Dhingra ◽  
Daniel Sando ◽  
Po-Shen Lu ◽  
Zoe G. Marzouk ◽  
Valanoor Nagarajan ◽  
...  

2021 ◽  
Vol 3 (4) ◽  
pp. 1-1
Author(s):  
Roland Pässler ◽  

The well-known classical heat capacity model developed by Debye proposed an approximate description of the temperature-dependence of heat capacities of solids in terms of a characteristic integral, the T-dependent values of which are parameterized by the Debye temperature, Θ D . However, numerous tests of this simple model have shown that within Debye’s original supposition of approximately constant, material-specific Debye temperature, it has little chance to be applicable to a larger variety of non-metals, except for a few wide-band-gap materials such as diamond or cubic boron nitride, which are characterized by an unusually low degree of phonon dispersion. In this study, we present a variety of structurally simple, unprecedented algebraic expressions for the high-temperature behavior of Debye’s conventional heat-capacity integral, which provide fine numerical descriptions of the isochoric (harmonic) heat capacity dependences parameterized by a fixed Debye temperature. The present sample application of an appropriate high-to-low temperature interpolation formula to the isobaric heat capacity data for diamond measured by Desnoyers and Morrison [17], Victor [24], and Dinsdale [25] provided a fine numerical simulation of data within a range of 200 to 600 K, involving a fixed Debye temperature of about 1855 K. Representing the monotonically increasing difference of the isobaric versus isochoric heat capacities by two associated anharmonicity coefficients, we were able to extend the accurate fit of the given heat capacity ( C p ( T ) ) data up to 5000 K. Furthermore, we have performed a high-accuracy fit of the whole C p ( T ) dataset, from approximately 20 K to 5000 K, on the basis of a previously developed hybrid model, which is based on two continuous low-T curve sections in combination with three discrete (Einstein) phonon energy peaks. The two theoretical alternative curves for the C p ( T ) dependence of diamond were found to be almost indistinguishable throughout the interval from 200 K to 5000 K.


2021 ◽  
Vol 5 (6) ◽  
pp. 153
Author(s):  
Hoc Nguyen Quang ◽  
Hien Nguyen Duc ◽  
Dung Nguyen Trong ◽  
Van Cao Long ◽  
Ştefan Ţălu

The objective of this study is to determine the analytic expressions of the Helmholtz free energy, the equilibrium vacancy concentration, the melting temperature, the jumps of volume, enthalpy the mean nearest neighbor distance and entropy at melting point, the Debye temperature for the BCC defective, the limiting temperature of absolute stability for the crystalline state, and for the perfect binary interstitial alloy. The results obtained from the expressions are combined with the statistical moment method, the limiting condition of the absolute stability at the crystalline state, the Clausius–Clapeyron equation, the Debye model and the Gruneisen equation. Our numerical calculations of obtained theoretical results were carried out for alloy WSi under high temperature and pressure. Our calculated melting curve and relation between the melting temperature and the silicon concentration for WSi are in good agreement with other calculations. Our calculations for the jumps of volume, enthalpy and entropy, and the Debye temperature for WSi predict and orient experimental results in the future.


Sign in / Sign up

Export Citation Format

Share Document