Farming systems and conservation needs in the Northwest Wheat Region

1996 ◽  
Vol 11 (2-3) ◽  
pp. 52-57 ◽  
Author(s):  
R.I. Papendick

AbstractThe Northwest Wheat Region is a contiguous belt of 3.3 million ha in Idaho, Oregon and Washington. Its climate varies from subhumid (<650 mm annual precipitation) to semiarid (<350 mm), with more than 60% of the annual precipitation occurring during the winter. Winter wheat yields range from a high of 8 t/ha in the wetter zones to a low of 1.5 t/ha in the drier zones. Winter wheat is grown in rotation with spring cereals and pulses where annual precipitation exceeds 450 mm; winter wheat-fallow prevails where annual precipitation is less than 330 mm. Tillage practices are designed to maximize infiltration and retention of water through soil surface and crop residue management. Because of the combination of winter precipitation, steep topography, and winter wheat cropping, much of the region is subject to a severe water erosion hazard, accentuated by freeze-thaw cycles that increase surface runoff and weaken the soil structure. Wind erosion is a major problem in the drier zones, where cover is less and soils are higher in sand. Residue management, primarily through reduced tillage and no-till systems, is the first defense against both wind and water erosion, but yields often are higher with conventional intensive ti llage. Factors that limit yields with conservation farming include weed and disease problems and th e lack of suitable tillage and seeding equipment. Conservation strategies must shift from relying on traditional tillage methods to development of complete no-till systems. Spring cropping as a replacement for winter wheat also needs to be investigated. In some cases, tillage for water conservation must be made compatible with tillage for erosion control.

1997 ◽  
Vol 77 (2) ◽  
pp. 207-213 ◽  
Author(s):  
G. Opoku ◽  
T. J. Vyn

Corn (Zea mays L.) yield reduction following winter wheat (Triticum aestivum L.) in no-till systems prompted a study on the effects of tillage and residue management systems on corn growth and seedbed conditions. Four methods for managing wheat residue (all residue removed, straw baled after harvest, straw left on the soil surface, straw left on the soil surface plus application of 50 kg ha−1N in the fall) were evaluated at two tillage levels: fall moldboard plow (MP) and no-till (NT). No-till treatments required at least 2 more days to achieve 50% corn emergence and 50% silking, and had the lowest corn biomass at 5 and 7 wk after planting. Grain yield was similar among MP treatments and averaged 1.1 t ha−1 higher than NT treatments (P < 0.05). Completely removing all wheat residue from NT plots reduced the number of days required to achieve 50% corn emergence and increased grain yields by 0.43 and 0.61 t ha–1 over baling and not baling straw, respectively, but still resulted in 8% lower grain yields than MP treatments. Grain yield differences among MP treatments were insignificant regardless of the amount of wheat residue left on the surface or N application in the fall. Early in the growing season, the NT treatments where residue was not removed had lower soil growing degree days (soil GDD) compared with MP (baled) treatment, and higher soil moisture levels in the top 15 cm compared with all other treatments. The application of 50 kg N ha−1 in the fall to NT (not baled) plots influenced neither the amount of wheat residue on the soil surface, nor the soil NO3-N levels at planting. Our results suggest that corn response in NT systems after wheat mostly depends on residue level. Key words: Winter wheat, straw management, no-till, corn, soil temperature, soil moisture


1996 ◽  
Vol 11 (2-3) ◽  
pp. 58-63 ◽  
Author(s):  
John E. Hammel

Sustainable crop production in the Pacific Northwest dry-farmed areas relies heavily on tillage and residue management systems to conserve water. Stable, sustainable yields cannot be achieved without adequate water conservation techniques. Frozen soil can reduce infiltration markedly, which decreases overwinter profile water storage and can cause severe soil erosion. Uncurbed evaporation losses throughout the year can greatly limit yields, particularly with summer fallow.In both summer-fallowed and annually cropped regions where soil freezes frequently, fall tillage is used to increase surface macroporosity and to provide open channels to below the frost depth. This enhances infiltration throughout the winter and insures better water intake during rapid snowmelt and rainfall when the soil is frozen. Fall tillage enhances overwinter water recharge under these conditions, whereas in areas where soil freezes infrequently, it does not improve water storage efficiency.In the dry-farmed regions receiving less than 330 mm annual precipitation, a winter wheat-fallow system is used to reduce the risk of uneconomical yields. Successful establishment of winter wheat following summer fallow is feasible only when proper management has suppressed evaporative loss. During the dry summer fallow, tillage is used to develop and maintain a soil mulch that restricts the flow of water, as both liquid and vapor. The tillage mulch effectively conserves stored soil water and maintains adequate seedzone moisture for fall establishment of winter wheat. However, the soil mulch can lead to high wind and water erosion.In the Pacific Northwest dry-farmed region, tillage by itself is not considered a substitute for proper residue management. Crop residues following harvest are important for conserving water and controlling erosion. Under conservation programs implemented since 1985, shallow subsurface tillage systems that maintain residues on the surface have substantially reduced wind and water erosion in the region. Surface residues are effective in decreasing evaporative water loss and trapping snow during the winter, and therefore increase overwinter recharge. While surface residues are much less effective in suppressing evaporative losses in dry-farmed areas during extended dry periods, residues provide substantial control of wind and water erosion during the fallow.Before conservation tillage systems came into use in the Pacific Northwest, water conservation frequently was achieved only through tillage. This helped to stabilize yields, but at a high cost to the soil resource. Poor use of surface residues and intensive tillage contributed to extensive wind and water erosion. Continued use of these practices would have caused yields to decline over time and required greater agrichemical inputs. To meet soil and water conservation needs, site-specific tillage and residue management systems were developed to account for the diversity and variability of soils and climate across the Pacific Northwest. Common to all these production systems is that both water conservation and effective residue management to protect the soil are required for long-term sustainable production.


1996 ◽  
Vol 11 (2-3) ◽  
pp. 83-88 ◽  
Author(s):  
Dale E. Wilkins

AbstractTillage, seeding and fertilizing implements for rainfed cereal production with a winter precipitation pattern have unique functional requirements. In designing and developing implements for these systems, soil and water conservation principles are critical and must be integrated into the total production system. Plant diseases, insects, weeds, environmental degradation, crop yield, crop quality and economics all may be influenced by tillage, seeding and fe rtilizing implements. Advances have been made in implements f or improved residue management, stand establishment and crop fertilization that leave more crop residue on the surface for soil and water conservation. However, they alter the seed and root zones, often resulting in uncontrolled pests, reduced yields, or increased production costs. Research is needed to integrate production implements into ecosystem management through automatic control systems for improved tillage, se eding and fertilizing. These systems should include field history mapping, real-time soil sens ors, and models to link data bases with equipment functions.


2021 ◽  
Vol 17 (1) ◽  
pp. 01-09
Author(s):  
Vanessa de Fátima Grah Ponciano ◽  
Luanne Martins de Siqueira Gama ◽  
Makcy Ramon Kened Sousa Silva ◽  
Sihelio Julio Silva Cruz ◽  
Isaac de Matos Ponciano ◽  
...  

The cover crop on the soil surface is a fundamental practice for the establishment of soil and water conservation systems.The Santa Fé System consists of the inclusion of forage species in the grain production system, mainly by intercropping. The objective of the study was to evaluate the effect of cultivation of single maize and maize in consortium with U. brizantha cv. marandu, in runoff and qualityof runoffusing a rainfall simulator.The experiment was carried out at the School Farm of the IF Goiano Campus Iporá in a Quartzipsament, in a Brazilian Savanna region.The following land coverwere evaluated: uncoveredsoil, single hybrid corn and SantaFé System. For the determination of the runoff volume and the runoff quality, three tests were performed in each treatment, using a pendulum rainfall simulator built at the IF Goiano Campus Iporá. In each test, the total volume of runoffwas counted and every five minutes samples were collected to characterize the runoffquality, in which turbidity, pH and electrical conductivity were analyzed.Water losses were reduced by 82% and turbidity by 96% in the Santa Fé system, compared to uncoveredsoil.The Santa Fé System showed better performance with less runoff volume and better quality of runoff when turbidity was evaluated, which demonstrates its high potential in minimizing soil water erosion.


Weed Science ◽  
1968 ◽  
Vol 16 (2) ◽  
pp. 255-258 ◽  
Author(s):  
O. C. Burnside ◽  
C. R. Fenster ◽  
C. E. Domingo

Weed control during the fallow year and yields of subsequent winter wheat (Triticum aestivumL.) were lower on unsprayed plots than on plots treated with 2-chloro-4-ethylamino-6-isopropylamino-s-triazine (atrazine) at 2 lb/A or 3-amino-l,2,4-triazole (amitrole) at 1/2lb/A plus 3-(p-chlorophenyl)-l,l-dimethylurea (monuron) at 1 lb/A. The moldboard plow gave the most effective weed control in the winter wheat-fallow rotation followed by the oneway and the sweep plow. Sweep plow tillage left the greatest amount of plant residues on the soil surface to prevent wind and water erosion, but it did not consistently destroy shallow-rooted downy brome (Bromus tectorumL.) plants. Average downy brome stands in winter wheat on fallow plots tilled with the sweep plow, oneway, and moldboard plow were 331, 114, and 16 plants per 54 sq ft, respectively. Winter wheat yields averaged for the sweep plow, oneway, and moldboard plow treatments were 17, 18, and 20 bu/A, respectively. The most feasible method of controlling weeds in a winter wheat-fallow rotation, found in this study, was oneway tillage in combination with the lower herbicide rates.


Weed Science ◽  
1997 ◽  
Vol 45 (2) ◽  
pp. 307-320 ◽  
Author(s):  
Martin A. Locke ◽  
Charles T. Bryson

Recent changes in technology, governmental regulation and scrutiny, and public opinion have motivated the agricultural community to examine current management practices from the perspective of how they fit into a sustainable agricultural framework. One aspect which can be incorporated into many existing farming systems is plant residue management (e.g., reduced tillage, cover crops). Many residue management systems are designed to enhance accumulation of plant residue at the soil surface. The plant residue covering the soil surface provides many benefits, including protection from soil erosion, soil moisture conservation by acting as a barrier against evaporation, improved soil tilth, and inhibition of weed emergence. This review summarizes recent literature (ca. last 25 yr) concerning the effects of plant residue management on the soil environment and how those changes impact herbicide interactions.


Author(s):  
A. Yu. Egovtseva ◽  
T. N. Melnichuk ◽  
S. F. Abdurashitov

The use of microbial preparations contributed to a change in the taxonomic structure of winter wheat rhizosphere microbiome was established. A more significant effect of microbial preparations was noted under no-till technology on the structure of the microbiome than with the traditional farming system.


2012 ◽  
Vol 36 (5) ◽  
pp. 1583-1590 ◽  
Author(s):  
Ademir de Oliveira Ferreira ◽  
João Carlos de Moraes Sá ◽  
Mônica Gabrielle Harms ◽  
Simone Miara ◽  
Clever Briedis ◽  
...  

The adoption of no-tillage systems (NT) and the maintenance of crop residues on the soil surface result in the long-term increase of carbon (C) in the system, promoting C sequestration and reducing C-CO2 emissions to the atmosphere. The purpose of this study was to evaluate the C sequestration rate and the minimum amount of crop residues required to maintain the dynamic C equilibrium (dC/dt = 0) of two soils (Typic Hapludox) with different textural classes. The experiment was arranged in a 2 x 2 x 2 randomized block factorial design. The following factors were analyzed: (a) two soil types: Typic Hapludox (Oxisol) with medium texture (LVTM) and Oxisol with clay texture (LVTA), (b) two sampling layers (0-5 and 5-20 cm), and (c) two sampling periods (P1 - October 2007; P2 - September 2008). Samples were collected from fields under a long-term (20 years) NT system with the following crop rotations: wheat/soybean/black oat + vetch/maize (LVTM) and wheat/maize/black oat + vetch/soybean (LVTA). The annual C sequestration rates were 0.83 and 0.76 Mg ha-1 for LVTM and LVTA, respectively. The estimates of the minimum amount of crop residues required to maintain a dynamic equilibrium (dC/dt = 0) were 7.13 and 6.53 Mg ha-1 year-1 for LVTM and LVTA, respectively. The C conversion rate in both studied soils was lower than that reported in other studies in the region, resulting in a greater amount of crop residues left on the soil surface.


Soil Research ◽  
2009 ◽  
Vol 47 (8) ◽  
pp. 839 ◽  
Author(s):  
Zonglu Yao ◽  
Hongwen Li ◽  
Huanwen Gao ◽  
Xiaoyan Wang ◽  
Jin He

The furrow opening configuration used by no-till seeders can have a major effect on crop emergence in conservation tillage systems. This is particularly important in annual double-cropping regions (winter wheat and summer maize) of northern China where large volumes of residue remain on the soil surface after maize harvesting. This problem has been investigated using 3 different opening configurations for no-till wheat seeding near Beijing in 2004–05 and 2005–06, and assessing performance in terms of soil disturbance, residue cover index, soil cone index, fuel consumption, winter wheat emergence, plant growth, and subsequent yield. In this cropping system, the single-disc opening configuration significantly decreased mean soil disturbance and increased residue cover index compared with the combined strip-chop and strip-till opening configurations, but winter wheat emergence was 6–9% less, probably due to greater levels of residue cover and greater seed zone soil cone index. Winter wheat growth after seeding in combined strip-chop and strip-till seeded plots was faster than that in single-disc seeded plots and mean yield was greater. The most suitable furrow opening configuration in heavy residue cover conditions appeared to be the strip-chop one, which can provide similar crop performance with marginally better fuel economy than the strip-till opening configuration. These results should be seen as preliminary, but they are still valuable for the design and selection of no-till wheat seeders for double cropping in this region of China.


Plant Disease ◽  
2010 ◽  
Vol 94 (1) ◽  
pp. 61-68 ◽  
Author(s):  
T. C. Paulitz ◽  
K. L. Schroeder ◽  
W. F. Schillinger

An irrigated cropping systems experiment was conducted for 6 years in east-central Washington State to examine agronomic and economic alternatives to continuous annual winter wheat (Triticum aestivum) with burning and plowing, and to determine how root diseases of cereals are influenced by management practices. The continuous winter wheat treatment with burning and plowing was compared with a 3-year no-till rotation of winter wheat–spring barley (Hordeum vulgare)–winter canola (Brassica napus) and three straw management treatments: burning, straw removal, and leaving the straw stubble standing after harvest. Take-all disease and inoculum increased from years 1 to 4 in the continuous winter wheat treatment with burning and plowing, reducing plant growth compared to the no-till treatments with crop rotations. Inoculum of Rhizoctonia solani AG-8 was significantly lower in the tilled treatment compared to the no-till treatments. Inoculum concentration of Fusarium pseudograminearum was higher than that of F. culmorum, and in one of three years, the former was higher in treatments with standing stubble and mechanical straw removal compared to burned treatments. Residue management method had no effect on Rhizoctonia inoculum, but spring barley had more crown roots and tillers and greater height with stubble burning. This 6-year study showed that irrigated winter wheat can be produced in a no-till rotation without major disease losses and demonstrated how cropping practices influence the dynamics of soilborne cereal diseases and inoculum over time.


Sign in / Sign up

Export Citation Format

Share Document