Influence of AC 263,222 Rate and Application Method on Weed Management in Peanut (Arachis hypogaea)

1997 ◽  
Vol 11 (3) ◽  
pp. 520-526 ◽  
Author(s):  
Theodore M. Webster ◽  
John W. Wilcut ◽  
Harold D. Coble

Experiments were conducted in 1991 and 1992 to evaluate the weed control effectiveness from several rates of AC 263,222 applied PPI and PRE (36 and 72 g ai/ha), early POST (EPOST) (18, 36, 54, or 72 g/ha), POST (18, 36, 54, or 72 g/ha), and EPOST followed by (fb) POST (27 fb 27 g/ha or 36 fb 36 g/ha). These treatments were compared to the commercial standard of bentazon at 0.28 kg ai/ha plus paraquat at 0.14 kg ai/ha EPOST fb bentazon at 0.56 kg/ha plus paraquat at 0.14 kg/ha plus 2,4-DB at 0.28 kg ae/ha. Application method had little effect on weed control with AC 263,222. In contrast, application rate affected control. Purple nutsedge, yellow nutsedge, prickly sida, smallflower morningglory, bristly starbur, common cocklebur, and coffee senna were controlled at least 82% with AC 263,222 at 36 g/ha (one-half the maximum registered use rate) regardless of application method. AC 263,222 at 72 g/ha (registered use rate) controlled sicklepod 84 to 93%, Florida beggarweed 65 to 100%, andIpomoeamorningglory species 89 to 99%. A single application of AC 263,222 at 36 g/ha or more controlled all weeds (with the exception of Florida beggarweed) as well or greater than sequential applications of bentazon plus paraquat fb bentazon, paraquat, and 2,4-DB. All rates of AC 263,222 applied POST and all application methods of AC 263,222 at 72 g/ha had better yields than the pendimethalin control.

1996 ◽  
Vol 10 (1) ◽  
pp. 145-152 ◽  
Author(s):  
John S. Richburg ◽  
John W. Wilcut ◽  
Daniel L. Colvin ◽  
Gerald R. Wiley

Field experiments conducted at four locations in Georgia and two locations in Florida during 1992 and 1993 evaluated AC 263,222 application rates and timings, systems, and mixtures for weed control, peanut injury, and yield. All rates of AC 263,222 applied early POST (EPOST) or POST controlledIpomoeamorningglories and smallflower morningglory at least 90%, and purple and yellow nutsedge at least 81%. Florida beggarweed and sicklepod control generally was highest when metolachlor was applied PPI followed by AC 263,222 applied EPOST at 71 g/ha, AC 263,222 at 27 or 36 g/ha plus bentazon plus paraquat applied POST, or with bentazon plus paraquat applied EPOST followed by AC 263,222 applied POST at 36 or 53 g/ha. Acifluorfen and acifluorfen plus bentazon reduced Florida beggarweed and sicklepod control at several locations when applied in mixture with AC 263,222. Common ragweed and hairy indigo control were 85 to 95% with bentazon plus paraquat applied EPOST followed by AC 263,222 applied POST at 36 or 53 g/ha. Highest peanut yields were obtained with treatments providing high levels of weed control.


Weed Science ◽  
1996 ◽  
Vol 44 (3) ◽  
pp. 615-621 ◽  
Author(s):  
John W. Wilcut ◽  
John S. Richburg ◽  
Gerald L. Wiley ◽  
F. Robert Walls

Field studies in 1990 and 1991 at six locations in Georgia and one location in North Carolina evaluated AC 263,222 for weed control, peanut tolerance, and yield. AC 263,222 applied early postemergence at 71 g ai ha−1controlled bristly starbur, coffee senna, common lambsquarters,Ipomoeaspecies, prickly sida, sicklepod, smallflower morningglory, and yellow nutsedge at least 91%. AC 263,222 controlled common cocklebur 77% and Florida beggarweed from 47 to 100%. Crop injury was 4% for AC 263,222 applied once and 12% or less from two applications. Mixtures of bentazon with AC 263,222 did not improve control compared to AC 263,222 alone. Imazethapyr did not improve control of AC 263,222 systems. In several locations, bentazon reduced control of Florida beggarweed with AC 263,222 when applied in a mixture compared to AC 263,222 alone. Weed control from the standard of paraquat plus bentazon applied early postemergence followed by paraquat, bentazon plus 2,4-DB applied POST did not provide the level or spectrum of weed control as AC 263,222 systems.


2004 ◽  
Vol 18 (4) ◽  
pp. 1018-1022 ◽  
Author(s):  
Joyce Tredaway Ducar ◽  
John W. Wilcut ◽  
John S. Richburg

Field studies were conducted in 1992 and 1993 to evaluate imazapic alone and in postemergence (POST) mixtures with atrazine or bentazon for weed control in imidazolinone-resistant corn treated with carbofuran. Nicosulfuron and nicosulfuron plus atrazine also were evaluated. Imazapic at 36 and 72 g ai/ha controlled large crabgrass 85 and 92%, respectively, which was equivalent to control obtained with nicosulfuron plus atrazine. Imazapic at the higher rate controlled large crabgrass better than nicosulfuron alone. Imazapic at 36 and 72 g/ha controlled Texas panicum 88 and 99%, respectively, and at the higher rate control was equivalent to that obtained with nicosulfuron alone or in mixture with atrazine. Imazapic plus bentazon POST controlled Texas panicum less than imazapic at the lower rate applied alone. Redroot pigweed was controlled 100% with all herbicide treatments. Imazapic at either rate alone or in tank mixture with bentazon or atrazine controlled prickly sida >99%, which was superior to control obtained with nicosulfuron or nicosulfuron plus atrazine. Smallflower, entireleaf, ivyleaf, pitted, and tall morningglories were controlled 96% or greater with all herbicide treatments except nicosulfuron alone. Sicklepod control was >88% with all imazapic treatments, whereas control from nicosulfuron alone was 72%. Corn yields were improved by the addition of POST herbicides with no differences among POST herbicide treatments.


1995 ◽  
Vol 9 (4) ◽  
pp. 801-806 ◽  
Author(s):  
John S. Richburg ◽  
John W. Wilcut ◽  
Gerald L. Wiley

Field experiments conducted at three locations in Georgia during 1991 and 1992 evaluated AC 263,222 and imazethapyr rates alone at 18, 36, 54, or 72 g ai/ha and in mixture for a total of 36, 54, or 72 g/ha of herbicide applied early-POST for weed control, peanut injury, and yield. An application of AC 263,222 at 72 g/ha controlled (> 90%)Ipomoeamorningglories, sicklepod, smallflower morningglory, and yellow nutsedge in all experiments and coffee senna and Florida beggarweed at Chula in 1991. Bristly starbur was controlled at least 90% with AC 263,222 at 72 g/ha at Tifton in 1991, but less than 62% at Chula in 1991. Imazethapyr applied at 72 g/ha controlled coffee senna,Ipomoeamorningglories, and smallflower morningglory at least 85%, but did not control Florida beggarweed or sicklepod and provided inconsistent bristly starbur and yellow nutsedge control. Bristly starbur and yellow nutsedge control was increased with several AC 263,222 plus imazethapyr mixtures. High peanut yields comparable to the standard were indicative of the AC 263,222 rate applied whether alone or in mixture with imazethapyr.


Weed Science ◽  
1994 ◽  
Vol 42 (4) ◽  
pp. 601-607 ◽  
Author(s):  
John W. Wilcut ◽  
John S. Richburg ◽  
E. Ford Eastin ◽  
Gerald R. Wiley ◽  
F. Robert Walls ◽  
...  

Field studies conducted at six locations in Georgia and one location in Virginia evaluated imazethapyr and imazethapyr mixtures for weed control, crop tolerance, and peanut yield. Imazethapyr applied early postemergence controlled bristly starbur, coffee senna, common cocklebur,Ipomoeaspecies, jimsonweed, prickly sida, and smallflower morningglory at least 91% and controlled yellow and purple nutsedge 88 and 98%, respectively. Paraquat plus bentazon applied early postemergence did not control the aforementioned weeds as well as imazethapyr or imazethapyr mixtures. Paraquat applied with imazethapyr reduced bristly starbur control 15% compared to imazethapyr alone but did not influence control of the other species. Imazethapyr control of bristly starbur was not improved by the addition of bentazon. Sicklepod control was less than 24% with imazethapyr and was at least 58% with imazethapyr plus paraquat Imazethapyr plus paraquat controlled sicklepod better than paraquat plus bentazon at three of the four locations evaluated. Imazethapyr did not control Florida beggarweed, while imazethapyr plus paraquat controlled at least 53%. Peanut injury was minimal 30 d after application for all treatments.


2009 ◽  
Vol 19 (2) ◽  
pp. 405-410 ◽  
Author(s):  
Sanjeev K. Bangarwa ◽  
Jason K. Norsworthy ◽  
Edward E. Gbur

Field trials were conducted in 2006 and 2007 to evaluate the performance of ‘Caliente’ mustard cover crop and herbicide combinations for weed control in polyethylene-mulched bell pepper (Capsicum annuum). ‘Caliente’ mustard is a blend of brown mustard (Brassica juncea) and white mustard (Sinapis alba). Herbicide treatments included 1/2× and 1× rates of two pre-emergence (PRE) and two postdirected (PD) herbicides. PRE herbicides were applied 1 week before transplanting, whereas PD herbicides were applied at 4 to 5 weeks after transplanting. ‘Caliente’ mustard did not supplement weed control or improve bell pepper yield in herbicide-treated plots. There was a significant herbicide selection by application rate interaction for large crabgrass (Digitaria sanguinalis) control and bell pepper yield, but only the main effect of herbicide selection and application rate affected the control of purple nutsedge (Cyperus rotundus), yellow nutsedge (Cyperus esculentus), and palmer amaranth (Amaranthus palmeri). Bell pepper injury was not more than 9% from all herbicides and application rates. Except for large crabgrass, control of all weed species improved by increasing the application rate from 1/2× to 1×. S-metolachlor PRE provided more broad-spectrum weed control than other herbicides. Halosulfuron applied PRE or PD was selective to purple nutsedge and yellow nutsedge, whereas trifloxysulfuron performed better than halosulfuron on palmer amaranth and large crabgrass. Plots treated with the 1× rate of S-metolachlor or trifloxysulfuron produced the highest marketable bell pepper yield among the herbicide treatments, but no herbicide treatment allowed for marketable yield equivalent to the weed-free treatment.


1999 ◽  
Vol 13 (2) ◽  
pp. 276-282 ◽  
Author(s):  
Shawn D. Askew ◽  
John W. Wilcut ◽  
Vernon B. Langston

Cloransulam-methyl applied postemergence (POST) following various preplant-incorporated (PPI) herbicides was evaluated in four experiments for weed control in North Carolina soybean over a 2-yr period at three locations. Acifluorfen plus bentazon or chlorimuron alone applied POST injured soybean more than cloransulam-methyl when following any soil-applied herbicide. When following trifluralin PPI, cloransulam-methyl controlled common ragweed, entireleaf morningglory, and pitted morningglory comparable to acifluorfen plus bentazon or chlorimuron. Common lambsquarters and prickly sida control was higher when acifluorfen plus bentazon was applied POST following trifluralin PPI compared to trifluralin PPI followed by cloransulam-methyl or chlorimuron. Acifluorfen plus bentazon or chlorimuron POST controlled yellow nutsedge and smooth pigweed more than cloransulam-methyl POST when following trifluralin PPI. When trifluralin was applied PPI in mixtures with chlorimuron plus metribuzin, flumetsulam, or imazaquin, control of most species was similar regardless of POST treatment used. Soybean treated with cloransulam-methyl yielded 250 kg/ha more than treatments with chlorimuron when these herbicides followed trifluralin plus flumetsulam or trifluralin plus imazaquin. Net returns with different herbicide systems followed trends similar to soybean yield.


EDIS ◽  
2020 ◽  
Vol 2020 (3) ◽  
Author(s):  
Pratap Devkota

Successful weed control in peanuts involves use of good management practices in all phases of peanut production. This 11-page document lists herbicide products registered for use in Florida peanut production, their mode of actions group, application rate per acre and per season, and reentry interval. It also discusses the performance of these herbicides on several weeds under Florida conditions. Written by J. A. Ferrell, G. E. MacDonald, and P. Devkota, and published by the UF/IFAS Agronomy Department, revised May 2020.


1996 ◽  
Vol 10 (4) ◽  
pp. 822-827 ◽  
Author(s):  
C. Dale Monks ◽  
John W. Wilcut ◽  
John S. Richburg ◽  
Joseph H. Hatton ◽  
Michael G. Patterson

Imidazolinone herbicides injure currently available commercial field corn cultivars; however, cultivars resistant to these herbicides have been developed. Sicklepod, Texas panicum, and annual morningglory control using AC 263,222 (36 and 72 g ai/ha), imazethapyr (36 and 72 g ai/ha), or nicosulfuron (35 g ai/ha) applied POST at 2,4, and 6 wk after planting were evaluated in imidazolinone-tolerant corn. Studies were conducted at Attapulgus and Plains, Georgia from 1992 through 1993. Nicosulfuron and AC 263,222 at 72 g/ha controlled Texas panicum at least 87% when applied 2 wk after planting. Imazethapyr did not consistently control Texas panicum or sicklepod, regardless of application rate. AC 263,222 at both rates and nicosulfuron controlled sicklepod at least 86% when applied 2 wk after planting; however, later application or application under dry conditions generally resulted in reduced control. All herbicides controlled the entireleaf and pitted morningglory complex at least 84% when applied 2 wk after planting. Imidazolinone-tolerant corn was tolerant to all herbicides, regardless of rate and timing, and generally yielded greater when weeds were controlled early in the season.


Weed Science ◽  
1998 ◽  
Vol 46 (6) ◽  
pp. 698-702 ◽  
Author(s):  
W. Carroll Johnson ◽  
Benjamin G. Mullinix

Field studies were conducted from 1995 to 1997 near Tifton, GA, to determine the benefits of stale seedbed weed control in cucumber. Three stale seedbed management systems—(1) power till stale seedbeds twice (2 ×), (2) glyphosate application immediately after planting, and (3) combination system of stale seedbeds power tilled once 2 wk prior to planting followed by glyphosate application immediately after planting cucumber—were evaluated as main plots. Subplots were weed management systems after planting cucumber: intensive, basic, and cultivation alone. Weed densities were generally greater in 1996 and 1997 than in 1995. Yellow nutsedge was the overall predominant species in 1995 (46 plants m−2), with Florida pusley being the predominant species in 1996 and 1997, at 80 and 124 plants m−2, respectively. Generally, stale seedbeds shallow tilled 2 × had fewer weeds and greater cucumber yields than stale seedbeds treated with glyphosate. Glyphosate did not adequately control emerged Florida pusley on stale seedbeds, resulting in reduced cucumber yield. Clomazone preemergence and bentazon/halosulfuron postemergence were used for broadleaf weed control in the intensive weed management system. These herbicides injured cucumber plants, delayed maturity, and reduced yield. Based on our results, stale seedbeds shallow tilled 2 × can be integrated into cucumber production and provide effective cultural weed control. Furthermore, these systems will replace the need for potentially injurious herbicides.


Sign in / Sign up

Export Citation Format

Share Document