Analytical global sensitivity analysis with Gaussian processes

Author(s):  
Ankur Srivastava ◽  
Arun K. Subramaniyan ◽  
Liping Wang

AbstractMethods for efficient variance-based global sensitivity analysis of complex high-dimensional problems are presented and compared. Variance decomposition methods rank inputs according to Sobol indices that can be computationally expensive to evaluate. Main and interaction effect Sobol indices can be computed analytically in the Kennedy and O'Hagan framework with Gaussian processes. These methods use the high-dimensional model representation concept for variance decomposition that presents a unique model representation when inputs are uncorrelated. However, when the inputs are correlated, multiple model representations may be possible leading to ambiguous sensitivity ranking with Sobol indices. In this work, we present the effect of input correlation on sensitivity analysis and discuss the methods presented by Li and Rabitz in the context of Kennedy and O'Hagan's framework with Gaussian processes. Results are demonstrated on simulated and real problems for correlated and uncorrelated inputs and demonstrate the utility of variance decomposition methods for sensitivity analysis.

Author(s):  
Ankur Srivastava ◽  
Arun K. Subramaniyan ◽  
Liping Wang

Methods for efficient variance based global sensitivity analysis of complex high-dimensional problems are presented and compared. Variance decomposition methods rank inputs according to Sobol indices which can be computationally expensive to evaluate. Main and interaction effect Sobol indices can be computed efficiently in the Kennedy & O’Hagan framework with Gaussian Processes (GPs). These methods use the High Dimensional Model Representation (HDMR) concept for variance decomposition which presents a unique model representation when inputs are uncorrelated. However, when the inputs are correlated, multiple model representations may be possible leading to ambiguous sensitivity ranking with Sobol indices. In this work we present the effect of input correlation on sensitivity analysis and discuss the methods presented by Li & Rabitz in the context of Kennedy & O’ Hagan framework with GPs. Results are demonstrated on simulated and real problems for correlated and uncorrelated inputs and demonstrate the utility of variance decomposition methods for sensitivity analysis.


2019 ◽  
Vol 23 ◽  
pp. 387-408 ◽  
Author(s):  
A. Cousin ◽  
A. Janon ◽  
V. Maume-Deschamps ◽  
I. Niang

In the past decade, Sobol’s variance decomposition has been used as a tool to assess how the output of a model is affected by the uncertainty on its input parameters. We show some links between global sensitivity analysis and stochastic ordering theory. More specifically, we study the influence of inputs’ distributions on Sobol indices in relation with stochastic orders. This gives an argument in favor of using Sobol’s indices in uncertainty quantification, as one indicator among others.


Sign in / Sign up

Export Citation Format

Share Document