Microtubule-associated protein 1A (MAP 1A) is a ganglion cell marker in adult rat retina

1989 ◽  
Vol 2 (4) ◽  
pp. 349-356 ◽  
Author(s):  
Lisa McKerracher ◽  
Richard B. Vallee ◽  
Albert J. Aguayo

AbstractWe have used antibodies raised against a cytoskeletal protein, microtubule-associated protein 1A (MAP 1A), to stain adult rat retina. In cryostat and polyethylene glycol-embedded radial sections, the fiber layer, ganglion cell layer, and inner plexiform layer were highly immunoreactive, a finding that suggested that the ganglion cell somata, axons, and dendrites were recognized by these antibodies. Retrograde labeling of retinal cell somata from the superior colliculus and dorso-lateral geniculate nucleus to identify ganglion cells showed colocalization of the tracer and immunoreactive cells. Double labeling with nuclear stains revealed that many cells in the ganglion cell layer, which are likely displaced amacrine cells, were not recognized by these antibodies. Furthermore, transection of ganglion cell axons, a procedure that causes retrograde degeneration of many of the axotomized ganglion cells, led to a decrease in the number of anti-MAP 1A immunoreactive cells in retinal wholemounts. Thus, MAP 1A antibodies preferentially stain ganglion cell somata and dendrites but not amacrine cells. These antibodies should be useful ganglion cell markers.

1980 ◽  
Vol 208 (1173) ◽  
pp. 433-446 ◽  

The development of the cells in the ganglion cell layer in the rat retina has been studied from 3 to 30 days of age postnatal by means of Golgi-stained whole-mounted retinae. The retina grows rapidly from birth to ten days of age and then more slowly from 10 to 30 days of age. The different classes of ganglion cell can be clearly recognized by 10 days of age, but type I ganglion cells with a size comparable to those found in the adult rat retina are not seen until thirty days of age. Type II cells may attain their adult size before type I cells do. The growth of the retina and the resulting decrease in cell density in the ganglion cell layer occur with the same time course as the increase in the size of the cell soma and their dendritic fields.


1989 ◽  
Vol 2 (4) ◽  
pp. 331-338 ◽  
Author(s):  
William D. Eldred ◽  
Kristin Cheung

AbstractWe have localized glycine-like immunoreactivity to provide new anatomical detail about glycinergic neurons in the turtle retina. A rabbit antiserum directed against a glycine/albumin conjugate was used with standard fluorescent and avidin-biotin labeling techniques. Some processes in the outer plexiform layer and many processes in the inner plexiform layer, numerous somata in the inner nuclear layer, and isolated somata in the ganglion cell layer were immunoreactive.The vast majority of labeled neurons were amacrine cells. One class of amacrine cells had well-labeled somata near the inner nuclear/inner plexiform layer border, which gave rise to thick primary processes that entered the inner plexiform layer and arborized near the border of strata 1 and 2 and in stratum 3. A second class of glycinergic neurons, consisting of putative interplexiform cells, was unique in that it gave rise to dendritic arborizations in both the outer plexiform layer and the inner plexiform layer. Some of the immunoreactive neurons in the ganglion cell layer were apparently displaced amacrine cells, while others were probably true ganglion cells because they gave rise to labeled axons, and many labeled axons were visible in the ganglion cell axon layer. These results suggested that glycine played an extensive role in the turtle retina, and that it was involved in many diverse synaptic interactions in both the outer plexiform layer and the inner plexiform layer.


1993 ◽  
Vol 10 (3) ◽  
pp. 551-561 ◽  
Author(s):  
Ursula Greferath ◽  
Frank Müller ◽  
Heinz Wässle ◽  
Brenda Shivers ◽  
Peter Seeburg

AbstractGamma-aminobutyric acid (GABA) is the major inhibitory neurotransmitter in the mammalian retina. The present paper describes the localization of GABAA receptors in the rat retina as revealed by in situ hybridization and immunocytochemistry.In situ hybridization with probes against various a subunits revealed a marked differential expression pattern. The αl subunit gene is expressed mainly in the bipolar and horizontal cell layer, the α2 gene in the amacrine and ganglion cell layer, and the α4 gene in a subpopulation of amacrine cells. β subunit mRNA is present diffusely throughout the entire inner nuclear layer and in the ganglion cell layer.The monoclonal antibody bd 17 (against β2/β3 subunits) stained subpopulations of GABAergic and glycinergic amacrine cells as well as some ganglion cells and bipolar cells. Immunoreactivity was not restricted to synaptic input sites. In the outer plexiform layer bipolar cell dendrites were immunoreactive; in the inner plexiform layer mainly amacrine and ganglion cell processes were labeled, and bipolar cell axons appeared unstained. The results demonstrate a strong heterogeneity of GABAA receptors in the retina.


1994 ◽  
Vol 11 (2) ◽  
pp. 401-409 ◽  
Author(s):  
Debora L. Nickla ◽  
Michael D. Gottlieb ◽  
Gonzalo Marin ◽  
Ximena Rojas ◽  
Luiz R. G. Britto ◽  
...  

AbstractIn birds, neurons of the isthmo-optic nucleus (ION), as well as “ectopic” neurons, send axons to the retina, where they synapse on cells in the inner nuclear layer (INL). Previous work has shown that centrifugal axons can be divided into two anatomically distinct types depending on their mode of termination: either “convergent” or “divergent” (Ramon y Cajal, 1889; Maturana & Frenk, 1965). We show that cytochrome-oxidase histochemistry specifically labels “convergent” centrifugal axons and target neurons which appear to be amacrine cells, as well as three “types” of ganglion cells: two types found in the INL (displaced ganglion cells) and one in the ganglion cell layer. Labeled target amacrine cells have distinct darkly labeled “nests” of boutons enveloping the somas, are associated with labeled centrifugal fibers, and are confined to central retina. Lesions of the isthmo-optic tract abolish the cytochrome-oxidase labeling in the centrifugal axons and in the target amacrine cells but not in the ganglion cells. Cytochrome-oxidase-labeled ganglion cells in the INL are large; one type is oval and similar to the classical displaced ganglion cells of Dogiel, which have been reported to receive centrifugal input; the other type is rounder. Rhodamine beads injected into the accessory optic system results in retrograde label in both types of cells, showing that two distinct types of displaced ganglion cells project to the accessory optic system in chickens. The ganglion cells in the ganglion cell layer that label for cytochrome oxidase also project to the accessory optic system. These have proximal dendrites that ramify in the outer inner plexiform layer. Neither the target amacrine cells nor either of the displaced ganglion cells are immunoreactive for the inhibitory transmitter gamma aminobutyric acid. At least some of the target amacrine cells may, however, be cholinoceptive: we found that the antibody to the alpha-7 subunit of the nicotinic ACh receptor labels a population of cells in the INL that are similar in location, size, and the presence of labeled bouton-like structures to those we find labeled with cytochrome oxidase. This antibody also labels neurons in the ION proper but not ectopic cells. In conclusion, it appears that cytochrome oxidase may be a marker for “convergent” centrifugal axons and at least one of their target cells in the INL.


1998 ◽  
Vol 15 (2) ◽  
pp. 377-387 ◽  
Author(s):  
BETH B. PETERSON ◽  
DENNIS M. DACEY

Ganglion cells with intraretinal axon collaterals have been described in monkey (Usai et al., 1991), cat (Dacey, 1985), and turtle (Gardiner & Dacey, 1988) retina. Using intracellular injection of horseradish peroxidase and Neurobiotin in in vitro whole-mount preparations of human retina, we filled over 1000 ganglion cells, 19 of which had intraretinal axon collaterals and wide-field, spiny dendritic trees stratifying in the inner half of the inner plexiform layer. The axons were smooth and thin (∼2 μm) and gave off thin (<1 μm), bouton-studded terminal collaterals that extended vertically to terminate in the outer half of the inner plexiform layer. Terminal collaterals were typically 3–300 μm in length, though sometimes as long as 700 μm, and were present in clusters, or as single branched or unbranched varicose processes with round or somewhat flattened lobular terminal boutons 1–2 μm in diameter. Some cells had a single axon whereas other cells had a primary axon that gave rise to 2–4 axon branches. Axons were located either in the optic fiber layer or just beneath it in the ganglion cell layer, or near the border of the ganglion cell layer and the inner plexiform layer. This study shows that in the human retina, intraretinal axon collaterals are associated with a morphologically distinct ganglion cell type. The synaptic connections and functional role of these cells are not yet known. Since distinct ganglion cell types with intraretinal axon collaterals have also been found in monkey, cat, and turtle, this cell type may be common to all vertebrate retinas.


1990 ◽  
Vol 4 (6) ◽  
pp. 619-623 ◽  
Author(s):  
Jan M. Provis ◽  
John Mitrofanis

AbstractWe have examined the morphology and distribution of neurones that contain nicotinamide adenine dinucleotide phosphate (NADPH) diaphorase in human retinae. NADPH-diaphorase reactivity was observed in three different classes of amacrine cells (ND1, ND2, ND3 cells) and in the cone photoreceptors. ND1 cells had relatively large somata (mean, 12.3 ¼m) located in the inner nuclear layer (INL) and in the ganglion cell layer (GCL). Their dendrites were often strongly labeled and spread into either the middle or outer strata of the inner plexiform layer (IPL). The somata of ND2 cells were medium-sized (mean, 8.2 ¼m) and located in the INL and in the GCL; their dendrites were usually beaded and often spread in either the middle or outer strata of the IPL. ND3 cells had small, round somata (mean, 5.2 ¼m) located in either the INL or GCL, and were without labeled processes. The total number of NADPH-diaphorase cells (all classes) was estimated at 118,000, with a mean density of about 100/mm2. The most striking fea ture of NADPH-diaphorase cells in humans was that their distribution was relatively uniform across the retina, with no evidence of a peak in density at the foveal rim.


2019 ◽  
Vol 36 ◽  
Author(s):  
Ashleigh J. Chandra ◽  
Sammy C.S. Lee ◽  
Ulrike Grünert

Abstract In primate retina, the calcium-binding protein calbindin is expressed by a variety of neurons including cones, bipolar cells, and amacrine cells but it is not known which type(s) of cell express calbindin in the ganglion cell layer. The present study aimed to identify calbindin-positive cell type(s) in the amacrine and ganglion cell layer of human and marmoset retina using immunohistochemical markers for ganglion cells (RBPMS and melanopsin) and cholinergic amacrine (ChAT) cells. Intracellular injections following immunolabeling was used to reveal the morphology of calbindin-positive cells. In human retina, calbindin-labeled cells in the ganglion cell layer were identified as inner and outer stratifying melanopsin-expressing ganglion cells, and ON ChAT (starburst amacrine) cells. In marmoset, calbindin immunoreactivity in the ganglion cell layer was absent from ganglion cells but present in ON ChAT cells. In the inner nuclear layer of human retina, calbindin was found in melanopsin-expressing displaced ganglion cells and in at least two populations of amacrine cells including about a quarter of the OFF ChAT cells. In marmoset, a very low proportion of OFF ChAT cells was calbindin-positive. These results suggest that in both species there may be two types of OFF ChAT cells. Consistent with previous studies, the ratio of ON to OFF ChAT cells was about 70 to 30 in human and 30 to 70 in marmoset. Our results show that there are species-related differences between different primates with respect to the expression of calbindin.


1994 ◽  
Vol 11 (3) ◽  
pp. 569-577 ◽  
Author(s):  
Luiz R. G. Britto ◽  
Scott W. Rogers ◽  
Dânia E. Hamassaki-Britto ◽  
Robert M. Duvoisin

AbstractImmunohistochemical and in situ hybridization techniques were used to localize the β4 subunit of the neuronal nicotinic acetylcholine receptors (nAChRs) in the ground squirrel retina. The β4 nAChR subunit was detected in both transverse and horizontal sections of the retina using a subunit-specific antiserum and the avidin-biotin complex technique. Two bands of labeled processes were seen in the inner plexiform layer, corresponding approximately to the laminae where the cholinergic cells arborize. Labeled cells were found in the ganglion cell layer and the inner third of the inner nuclear layer. The cells in the ganglion cell layer were medium- to large-sized and were frequently observed to give rise to axon-like processes. Most of the labeled neurons in the inner nuclear layer were small presumptive amacrine cells, but a few medium-to-large cells were also labeled. These could constitute a different class of amacrine cells or displaced ganglion cells. The latter possibility is supported by the existence of nAChR-containing displaced ganglion cells in the avian retina. In situ hybridization with a 35S-labeled cRNA probe revealed the expression of mRNA coding for the nAChR β4 subunit in the ganglion cell layer and the inner third of the inner nuclear layer. This finding confirmed the immunohistochemical data of the cellular localization of β4 nAChR subunit.These results indicate that the β4 nAChR subunit is expressed by specific subtypes of neurons on the ground squirrel retina. As the expression of that particular nAChR subunit appears to be very limited in the brain, the present data suggest that the retina might represent a useful model to study the function of nAChRs containing the β4 subunit.


2006 ◽  
Vol 23 (2) ◽  
pp. 257-273 ◽  
Author(s):  
HELENA J. BAILES ◽  
ANN E.O. TREZISE ◽  
SHAUN P. COLLIN

Australian lungfishNeoceratodus forsterimay be the closest living relative to the first tetrapods and yet little is known about their retinal ganglion cells. This study reveals that lungfish possess a heterogeneous population of ganglion cells distributed in a horizontal streak across the retinal meridian, which is formed early in development and maintained through to adult stages. The number and complement of both ganglion cells and a population of putative amacrine cells within the ganglion cell layer are examined using retrograde labelling from the optic nerve and transmission electron-microscopic analysis of axons within the optic nerve. At least four types of retinal ganglion cells are present and lie predominantly within a thin ganglion cell layer, although two subpopulations are identified, one within the inner plexiform and the other within the inner nuclear layer. A subpopulation of retinal ganglion cells comprising up to 7% of the total population are significantly larger (>400 μm2) and are characterized as giant or alpha-like cells. Up to 44% of cells within the retinal ganglion cell layer represent a population of presumed amacrine cells. The optic nerve is heavily fasciculated and the proportion of myelinated axons increases with body length from 17% in subadults to 74% in adults. Spatial resolving power, based on ganglion cell spacing, is low (1.6–1.9 cycles deg−1,n= 2) and does not significantly increase with growth. This represents the first detailed study of retinal ganglion cells in sarcopterygian fish, and reveals that, despite variation amongst animal groups, trends in ganglion cell density distribution and characteristics of cell types were defined early in vertebrate evolution.


Development ◽  
1974 ◽  
Vol 31 (1) ◽  
pp. 139-149
Author(s):  
H. Fujisawa ◽  
H. Nakamura ◽  
M. Chin

The fine structure of reconstructed neural retina formed from dissociated neural retinal cells of 6½-day-old chick embryos on the chorio-allantoic membrane of chick embryos was examined with the electron microscope. Three nuclear layers (ganglion cell layer, inner and outer nuclear layers) and two fibrous layers (inner and outer plexiform layers) are found within the reconstructed retina. Both the outer and the inner limiting membranes of the reconstructed structure are constituted from the processes of differentiated Müller cells. The ganglion cell layer consists of two types of cell, though a typical ganglion cell with axonal process is not observed. Optic nerve fibres are not formed. Amacrine cells are recognized within the inner nuclear layer. Differentiation of the inner segment of the photoreceptor cell occurs, but not of the outer segment. Synaptic structures are recognized in the inner plexiform layer, but not in the outer plexiform layer.


Sign in / Sign up

Export Citation Format

Share Document