Neurophysiology of central retinal degeneration in cat

1993 ◽  
Vol 10 (3) ◽  
pp. 499-509 ◽  
Author(s):  
W.R. Levick ◽  
L.N. Thibos

AbstractReceptive fields of ganglion cells have been studied in cats possessing a chronic, arrested lesion of central retinal degeneration. Lesions were characterized by an ophthalmoscopically sharp border separating apparently normal retina from the region of the lesion. Under direct ophthalmoscopic guidance, a succession of recordings was obtained from ganglion cells having cell bodies at various positions relative to the lesion. Cells located more than 1 deg outside the ophthalmoscopic border had normal visual sensitivity as assessed by area-threshold experiments. Inside the lesion cells within 1 deg of the border had reduced sensitivity which often precluded functional classification by the usual visual tests. Ganglion cells located more than 1 deg inside the border of large lesions were blind and some had abnormal patterns of maintained discharge of action potentials. Nevertheless, the antidromic latencies of these blind cells fell into the familiar conduction groups (T1/T2/T3). Receptive-field maps of cells near the border of the lesion often appeared truncated, with the missing portion of the field covered by the lesion. These observations were consistent with the abnormal form of area-thresholdcurves. Altlhough the responsiveness of cells near the lesion was abnormally low for grating stimuli, cutoff spatial frequency and orientation bias of these cells were within normal limits.

1998 ◽  
Vol 15 (6) ◽  
pp. 1145-1155 ◽  
Author(s):  
D.-J. OH ◽  
D.P.M. NORTHMORE

After being severed, optic axons in goldfish regenerate and eventually restore the retinotectal map; refinement of the map depends upon impulse activity generated by the ganglion cells. Because little is known about the changes in activity and receptive-field properties of ganglion cells during regeneration, we made extracellular recordings from them in the intact eye up to 95 days after sectioning their axons in the optic tract. Their receptive fields were classified as OFF-, ON–OFF-, or ON-centers, and their axonal conduction velocities measured by antidromic activation. The rate of encountering single units dropped drastically at 4–8 days postsection when only a few OFF-center units could be recorded, recovering to normal between 42 and 63 days. Receptive-field centers were normal in size, except for the few OFF-centers at 4–8 days which were abnormally large. Maintained discharge rates of all types were depressed up to 42 days, but ON–OFF-center units were more spontaneously active than normal around 42 days. Light-evoked responses in OFF-center units were subnormal at 4–8 days, becoming supernormal at 16 days and normal thereafter. ON–OFF- and ON-center units started to regain responsiveness at 16 days, and became supernormal at 42 days, before returning to normal. Conduction velocities of all fiber groups dropped to a minimum at 8 days, the fastest being affected most. There was a gradual recovery to normal conduction velocity by 63 days. The conduction latencies of OFF- and ON–OFF-center units recovered to normal by 42 days, and ON-center units by 63 days. Recovery of ganglion cell responsiveness correlates with functional recovery in the retinotectal system: OFF-center units recover light-evoked responses at about the time OFF activity first reappears in the tectum. ON- and ON–OFF-center units recover later, exhibiting supernormal spiking activity around the time that ON responses reappear in the tectum.


2016 ◽  
Vol 115 (6) ◽  
pp. 2761-2778 ◽  
Author(s):  
Reece E. Mazade ◽  
Erika D. Eggers

The retina adjusts its signaling gain over a wide range of light levels. A functional result of this is increased visual acuity at brighter luminance levels (light adaptation) due to shifts in the excitatory center-inhibitory surround receptive field parameters of ganglion cells that increases their sensitivity to smaller light stimuli. Recent work supports the idea that changes in ganglion cell spatial sensitivity with background luminance are due in part to inner retinal mechanisms, possibly including modulation of inhibition onto bipolar cells. To determine how the receptive fields of OFF cone bipolar cells may contribute to changes in ganglion cell resolution, the spatial extent and magnitude of inhibitory and excitatory inputs were measured from OFF bipolar cells under dark- and light-adapted conditions. There was no change in the OFF bipolar cell excitatory input with light adaptation; however, the spatial distributions of inhibitory inputs, including both glycinergic and GABAergic sources, became significantly narrower, smaller, and more transient. The magnitude and size of the OFF bipolar cell center-surround receptive fields as well as light-adapted changes in resting membrane potential were incorporated into a spatial model of OFF bipolar cell output to the downstream ganglion cells, which predicted an increase in signal output strength with light adaptation. We show a prominent role for inner retinal spatial signals in modulating the modeled strength of bipolar cell output to potentially play a role in ganglion cell visual sensitivity and acuity.


1976 ◽  
Vol 39 (6) ◽  
pp. 1220-1235 ◽  
Author(s):  
R. H. Masland ◽  
A. Ames

1. Rabbit retinas were isolated and superfused with a physiological medium. Ganglion cell activity was recorded during stimulation with focused light, and receptive fields were mapped. Receptive fields were identical to those found in vivo and did not change during a 6-h incubation. After the receptive field of a ganglion cell had been identified, acetylcholine or related agents were introduced singly or in combination into the medium, and their effect on the cell's spontaneous and light-evoked activity was observed. 2. Ganglion cells with on-center or directionally selective receptive fields were excited when ACh was added to the medium. The response to exogenous ACh was prevented by cholinergic antagonists. 3. These cells' spontaneous activity and response to light were enhanced by anticholinesterase and depressed by cholinergic antagonists. Antagonists varied in their ability to block the light-evoked response, with dihydro-beta-erythroidine the most effective. 4. Thresholds for ACh or the related agents were low, ranging from 1 to 40 muM; their effects were rapidly and completely reversed when the retina was returned to control medium. 5. In retinas incubated in medium containing 20 mM Mg2+ and 0.2 mM Ca2+, ganglion cells lost completely both their spontaneous and light-evoked activity, but retained their ability to generate action potentials in response to elevated K+. Ganglion cell activity rapidly returned to normal when the retina was returned to medium containing normal electrolytes. On-center and directionally selective cells were excited by ACh in retinas where synaptic transmission had been inhibited by 20 mM Mg2+ and 0.2 mM Ca2+. 6. The responses of on-center and directionally selective cells to ACh, to anticholinesterase, and to cholinergic antagonists in control medium indicate that the retina contains one or more synapses using ACh as a neurotransmitter. The response to ACh in retinas exposed to 20 mM Mg2+ and 0.2 mM Ca2+ suggests that at least one such synapse in on the ganglion cell itself. 7. Off-center cells were inhomogenous in their response to ACh. Although some responded just as the other classes of cell, the majority responded quite weakly and a subgroup was encountered which was entirely unaffected by even 1 mM ACh, by levels of physostigmine which inactivate virtually all retinal acetyl-cholinesterase, or by high concentrations of cholinergic antagonists. Only 2 of 20 off-cells tested in the presence of 20 mM Mg2+ and 0.2 mM Ca2+ were excited by ACh. Apparently ACh is not a primary transmitter for most off-cells.


1957 ◽  
Vol 40 (5) ◽  
pp. 683-702 ◽  
Author(s):  
S. W. Kuffler ◽  
R. Fitzhugh ◽  
H. B. Barlow

Nervous activity has been recorded from the unopened eye of decerebrate cats. Recordings were made with metal electrodes or with small micropipettes from ganglion cells or nerve fibers. Continuous maintained discharges were seen in all ganglion cells during steady illumination of their receptive fields, as well as in complete darkness. Possible artefacts, such as electrode pressure, abnormal circulation, anesthetic, and several other factors have been excluded as the source of the maintained discharge. Visual stimuli are therefore transmitted by modulating the ever present background activity. Discharge frequencies were measured following changes of retinal illumination. No consistent patterns of frequency change were found. The maintained discharge frequency may be permanently increased or decreased, or may remain practically unchanged by altering the steady level of illumination. In addition, there were often transient frequency changes during the first 5 to 10 minutes after changing illumination, before a final steady rate was established. A statistical analysis of the impulse intervals of the maintained discharge showed: (a) the intervals were distributed according to the gamma distribution (Pearson's type III), (b) the first serial correlation coefficient of the intervals was between –0.10 and –0.24, with a mean value of –0.17, which is significantly different from zero, (c) the higher order serial correlation coefficients were not significantly different from zero. Thus the firing probability at any time depends on the times of occurrence of the two preceding impulses only, and in such a way as to indicate that each impulse is followed by a transient depression of excitability that outlasts the following impulse. The possible sites at which spontaneous or maintained activity may originate in the retina are discussed.


2018 ◽  
Author(s):  
Qing Shi ◽  
Pranjal Gupta ◽  
Alexandra Boukhvalova ◽  
Joshua H. Singer ◽  
Daniel A. Butts

AbstractThere are 20-50 functionally- and anatomically-distinct ganglion cell types in the mammalian retina; each type encodes a unique feature of the visual world and conveys it via action potentials to the brain. Individual ganglion cells receive input from unique presynaptic retinal circuits, and the characteristic patterns of light-evoked action potentials in each ganglion cell type therefore reflect computations encoded in synaptic input and in postsynaptic signal integration and spike generation. Unfortunately, there is a dearth of tools for characterizing retinal ganglion cell computation. Therefore, we developed a statistical model, the separable Nonlinear Input Model, capable of characterizing the large array of distinct computations reflected in retinal ganglion cell spiking. We recorded ganglion cell responses to a correlated noise (“cloud”) stimulus designed to accentuate the important features of retinal processing in an in vitro preparation of mouse retina and found that this model accurately predicted ganglion cell responses at high spatiotemporal resolution. It identified multiple receptive fields (RFs) reflecting the main excitatory and suppressive components of the response of each neuron. Most significantly, our model succeeds where others fail, accurately identifying ON-OFF cells and segregating their distinct ON and OFF selectivity and demonstrating the presence of different types of suppressive receptive fields. In total, our computational approach offers rich description of ganglion cell computation and sets a foundation for relating retinal computation to retinal circuitry.


2011 ◽  
Vol 105 (5) ◽  
pp. 2560-2571 ◽  
Author(s):  
Chris Sekirnjak ◽  
Lauren H. Jepson ◽  
Pawel Hottowy ◽  
Alexander Sher ◽  
Wladyslaw Dabrowski ◽  
...  

Retinitis pigmentosa (RP) is a leading cause of degenerative vision loss, yet its progressive effects on visual signals transmitted from the retina to the brain are not well understood. The transgenic P23H rat is a valuable model of human autosomal dominant RP, exhibiting extensive similarities to the human disease pathology, time course, and electrophysiology. In this study, we examined the physiological effects of degeneration in retinal ganglion cells (RGCs) of P23H rats aged between P37 and P752, and compared them with data from wild-type control animals. The strength and the size of visual receptive fields of RGCs decreased rapidly with age in P23H retinas. Light responses mediated by rod photoreceptors declined earlier (∼P300) than cone-mediated light responses (∼P600). Responses of ON and OFF RGCs diminished at a similar rate. However, OFF cells exhibited hyperactivity during degeneration, whereas ON cells showed a decrease in firing rate. The application of synaptic blockers abolished about half of the elevated firing in OFF RGCs, indicating that the remodeled circuitry was not the only source of degeneration-induced hyperactivity. These results advance our understanding of the functional changes associated with retinal degeneration.


1990 ◽  
Vol 4 (4) ◽  
pp. 367-377 ◽  
Author(s):  
D. M. Guthrie ◽  
J. R. Banks

AbstractThe anatomy and physiology of the retinotectal pathway of the perch was investigated using physiological and histological techniques. Massed responses of the optic nerve to single shocks exhibited five distinct peaks. Single-unit responses to shocks indicate two groups of fast fibers correlating well with peaks I and II of the massed response. The flash-evoked response in nerve and tectum has three major phases (PSPI-III), with a marked low-threshold fast component. Patterns of flash-evoked response from single fibers vary, but the responses of fast transient fibers coincide with the timing of PSPI, and longer latency groups with PSPII-III. Units reflexly activated by efferents were also seen, and 12% of units were photically inexcitable.Surprisingly, few fibers responded well to a scanned spot light, unlike tectal cells, and receptive fields were often large (>70 deg). ON/OFF responses, evoked either by whole field or local illumination, were much commoner than pure ON or OFF responses.Effects of electrical stimulation or cautery of the tectum on the flash-evoked response of fiber bundles, via the efferents were marginal, but repetitive stimulation or section of the optic nerve produced clear-cut deficits in the slow components of the flash-evoked response of the nerve. Stimulation of the eighth nerve produced a complex long-latency, large-amplitude response in the optic nerve.The fiber spectrum of the optic nerve taken from electron micrographs revealed the presence of a relatively small group (less than 1%) of thick fibers with diameters between 3 μm and 10 μm that could be correlated with fast responses recorded from the optic nerve, and the remainder with axon diameters down to 0.2 μm providing the slow responses. The distribution of cell-body diameters from sectioned and wholemount material indicated a marked distinction between small and large ganglion cells. The total number of fibers in the nerve was estimated 868,840.


1989 ◽  
Vol 94 (6) ◽  
pp. 987-995 ◽  
Author(s):  
J B Troy ◽  
C Enroth-Cugell

We examined the dependence of the center radius of X cells on temporal frequency and found that at temporal frequencies above 40 Hz the radius increases in a monotonic fashion, reaching a size approximately 30% larger at 70 Hz. This kind of spatial expansion has been predicted with cable models of receptive fields where inductive elements are included in modeling the neuronal membranes. Hence, the expansion of the center radius is clearly important for modeling X cell receptive fields. On the other hand, we feel that it might be of only minor functional significance, since the responsivity of X cells is attenuated at these high temporal frequencies and the signal-to-noise ratio is considerably worse than at low and midrange temporal frequencies.


2021 ◽  
Vol 51 (6) ◽  
pp. 816-819
Author(s):  
A. T. Aliper ◽  
I. Damjanovic ◽  
A. A. Zaichikova ◽  
E. M. Maximova ◽  
P. V. Maximov

2017 ◽  
Vol 27 (08) ◽  
pp. 1750045 ◽  
Author(s):  
Eduardo Sánchez ◽  
Rubén Ferreiroa ◽  
Adrián Arias ◽  
Luis M. Martínez

The center–surround organization of the receptive fields (RFs) of retinal ganglion cells highlights the presence of local contrast in visual stimuli. As RF of thalamic relay cells follow the same basic functional organization, it is often assumed that they contribute very little to alter the retinal output. However, in many species, thalamic relay cells largely outnumber their retinal inputs, which diverge to contact simultaneously several units at thalamic level. This gain in cell population as well as retinothalamic convergence opens the door to question how information about contrast is transformed at the thalamic stage. Here, we address this question using a realistic dynamic model of the retinothalamic circuit. Our results show that different components of the thalamic RF might implement filters that are analogous to two types of well-known image processing techniques to preserve the quality of a higher resolution version of the image on its way to the primary visual cortex.


Sign in / Sign up

Export Citation Format

Share Document