Synaptic connectivity of two types of recoverin-labeled cone bipolar cells and glutamic acid decarboxylase immunoreactive amacrine cells in the inner plexiform layer of the rat retina

1999 ◽  
Vol 16 (4) ◽  
pp. 791-800 ◽  
Author(s):  
MYUNG-HOON CHUN ◽  
IN-BEOM KIM ◽  
SU-JA OH ◽  
JIN-WOONG CHUNG

We investigated the synaptic connectivity of two populations of recoverin-labeled bipolar cells and GABAergic neurons in the inner plexiform layer (IPL) of the rat retina. Two types of cone bipolar cells, type 2 and type 8, were stained with anti-recoverin antibodies, and GABAergic neurons were stained with anti-glutamic acid decarboxylase (GAD) antibodies. Type 2 cone bipolar axons received synaptic input from amacrine cell processes in 177 cases; among these amacrine cell processes, 92 processes (52.0%) were GAD-like immunoreactive. A total of 159 amacrine cell processes, which are presynaptic to type 8 cone bipolar cells, were observed. Among these processes, 117 processes (73.6%) were GAD-like immunoreactive. The postsynaptic elements at the ribbon synapses of recoverin-labeled cone bipolar cells were observed in 482 processes. In both type 2 and type 8 cone bipolar cells, the major output was to amacrine cell processes. At the ribbon synapses of the type 2 cone bipolar cells, 224 of the postsynaptic profiles were amacrine cell processes, 97 processes (43.3%) were GAD-like immunoreactive. In type 8 cone bipolar cells, 45 processes (30.2%) of 149 amacrine cell processes were GAD-like immunoreactive. Our results provide morphological evidence that GABA is a major transmitter involved in the visual processing of type 2 and 8 cone bipolar cells and GABA may have a stronger influence on type 8 cone bipolar cells than type 2 cone bipolar cells in the IPL of the rat retina.

1999 ◽  
Vol 16 (6) ◽  
pp. 1133-1144 ◽  
Author(s):  
E.D. MILLER ◽  
M.N. TRAN ◽  
G.-K. WONG ◽  
D.M. OAKLEY ◽  
R.O.L. WONG

Bipolar cells are not only important for visual processing but input from these cells may underlie the reorganization of ganglion cell dendrites in the inner plexiform layer (IPL) during development. Because little is known about the development of bipolar cells, here we have used immunocytochemical markers and dye labeling to identify and follow their differentiation in the neonatal ferret retina. Putative cone bipolar cells were immunoreacted for calbindin and recoverin, and rod bipolar cells were immunostained for protein kinase C (PKC). Our results show that calbindin-immunoreactive cone bipolar cells appear at postnatal day 15 (P15), at which time their axonal terminals are already localized to the inner half of the IPL. By contrast, recoverin-immunoreactive cells with terminals in the IPL are present at birth, but many of these cells may be immature photoreceptors. By the second postnatal week, recoverin-positive cells resembling cone bipolar cells were clearly present, and with increasing age, two distinct strata of immunolabeled processes occupied the IPL. PKC-containing rod bipolar cells emerged by the fourth postnatal week and at this age have stratified arbors in the inner IPL. The early bias of bipolar axonal arbors in terminating in the inner or outer half of the IPL is confirmed by dye labeling of cells with somata in the inner nuclear layer. At P10, several days before ribbon synapses have been previously observed in the ferret IPL, the axon terminals of all dye-labeled bipolar cells were clearly stratified. The results suggest that bipolar cells could provide spatially localized interactions that are suitable for guiding dendritic lamination in the inner retina.


2015 ◽  
Vol 114 (3) ◽  
pp. 1757-1772 ◽  
Author(s):  
Robert J. Purgert ◽  
Peter D. Lukasiewicz

The retina is the first stage of visual processing. It encodes elemental features of visual scenes. Distinct cone bipolar cells provide the substrate for this to occur. They encode visual information, such as color and luminance, a principle known as parallel processing. Few studies have directly examined whether different forms of spatial information are processed in parallel among cone bipolar cells. To address this issue, we examined the spatial information encoded by mouse ON cone bipolar cells, the subpopulation excited by increments in illumination. Two types of spatial processing were identified. We found that ON cone bipolar cells with axons ramifying in the central inner plexiform layer were tuned to preferentially encode small stimuli. By contrast, ON cone bipolar cells with axons ramifying in the proximal inner plexiform layer, nearest the ganglion cell layer, were tuned to encode both small and large stimuli. This dichotomy in spatial tuning is attributable to amacrine cells providing stronger inhibition to central ON cone bipolar cells compared with proximal ON cone bipolar cells. Furthermore, background illumination altered this difference in spatial tuning. It became less pronounced in bright light, as amacrine cell-driven inhibition became pervasive among all ON cone bipolar cells. These results suggest that differential amacrine cell input determined the distinct spatial encoding properties among ON cone bipolar cells. These findings enhance the known parallel processing capacity of the retina.


1999 ◽  
Vol 16 (2) ◽  
pp. 379-389 ◽  
Author(s):  
MYUNG-HOON CHUN ◽  
SU-JA OH ◽  
IN-BEOM KIM ◽  
KEUN-YOUNG KIM

We have investigated the morphology of the NOS-like immunoreactive neurons and their synaptic connectivity in the rat retina by immunocytochemistry using antisera against nitric oxide synthase (NOS). In the present study, several types of amacrine cells were labeled with anti-NOS antisera. Type 1 cells had large somata located in the inner nuclear layer (INL) with long and sparsely branched processes ramifying mainly in stratum 3 of the inner plexiform layer (IPL). Somata of type 2 cells with smaller diameters were also located in the INL. Their fine processes branched mostly in stratum 3 of the IPL. A third population showing NOS-like immunoreactivity was a class of displaced amacrine cells in the ganglion cell layer (GCL). Their soma size was similar to that of the type 1 cells; however, their processes stratified mainly in strata 4 and 5 of the IPL. Labeled neurons were evenly distributed throughout the retina, and the mean densities were 57.0 ± 9.7 cells/mm2 for the type 1 cells, 239.3 ± 43.4 cells/mm2 for the type 2 cells and 121.2 ± 27.5 cells/mm2 cells for the displaced amacrine cells. The synaptic connectivity of NOS-like immunoreactive amacrine cells was identified in the IPL by electron microscopy. NOS-labeled amacrine cell processes received synaptic input from other amacrine cell processes and bipolar cell axon terminals in all strata of the IPL. The most frequent postsynaptic targets of NOS-immunoreactive amacrine cells were other amacrine cell processes. Ganglion cell dendrites were also postsynaptic to NOS-like immunoreactive neurons in both sublaminae of the IPL. Synaptic outputs onto bipolar cells were observed in sublamina b of the IPL. In addition, a few synaptic contacts between labeled cell processes were observed. Our results suggest that NOS immunoreactive cells may be modulated by other amacrine cells and ON cone bipolar cells, and act preferentially on other amacrine cells.


2002 ◽  
Vol 19 (3) ◽  
pp. 299-305 ◽  
Author(s):  
DAVID W. MARSHAK ◽  
ELIZABETH S. YAMADA ◽  
ANDREA S. BORDT ◽  
WENDY C. PERRYMAN

A labeled ON parasol ganglion cell from a macaque retina was analyzed in serial, ultrathin sections. It received 13% of its input from diffuse bipolar cells. These directed a large proportion of their output to amacrine cells but received a relatively small proportion of their amacrine cell input via feedback synapses. In these respects, they were similar to the DB3 bipolar cells that make synapses onto OFF parasol cells. Bipolar cell axons that contacted the ON parasol cell in stratum 4 of the inner plexiform layer always made synapses onto the dendrite, and therefore, the number of bipolar cell synapses onto these ganglion cells could be estimated reliably by light microscopy in the future. Amacrine cells provided the majority of inputs to the ON parasol cell. Only a few of the presynaptic amacrine cell processes received inputs from the same bipolar cells as the parasol cells, and most of the presynaptic amacrine cell processes did not receive any inputs at all within the series. These findings suggest that most of the inhibitory input to the ON parasol cell originates from other areas of the retina. Amacrine cells presynaptic to the parasol ganglion cell interacted very infrequently with other neurons in the circuit, and therefore, they would be expected to act independently, for the most part.


1993 ◽  
Vol 10 (3) ◽  
pp. 455-471 ◽  
Author(s):  
Lawrence B. Hurd ◽  
William D. Eldred

AbstractAlthough serotonin is thought to be a neurotransmitter in a number of retinal systems, much of the precise synaptic connectivity of serotonergic neurons is unknown. To address this issue, we used an antiserum directed against serotonin to label serotonergic bipolar and amacrine cells in the turtle retina. Light-microscopic analysis of labeled amacrine and bipolar cells indicated that both had bistratified dendritic arborizations primarily in stratum 1 and in strata 4/5 of the inner plexiform layer.Ultrastructural analysis of the neurocircuitry of these cells indicated that the processes of labeled bipolar cells in the outer plexiform layer made basal junction contacts with photoreceptor terminals. Only in rare instances did labeled bipolar cells processes invaginate near photoreceptor ribbon synapses. Processes of labeled bipolar cells received both conventional and small ribbon synaptic contacts in the outer plexiform layer. Bipolar cell processes in stratum 1 of the inner plexiform layer synapsed onto either amacrine/amacrine or amacrine/ganglion cell dyads, and made rare ribbon synaptic contacts onto labeled amacrine cell processes. Synaptic inputs to serotonergic bipolar cells in stratum 1 were from unlabeled bipolar and amacrine cells. Bipolar cell contacts in strata 4/5 were similar to those in stratum 1, but were fewer in number and no bipolar cell inputs were seen.Labeled amacrine cell output in both strata was onto other unlabeled amacrine cells and ganglion cells; but synaptic outputs to unlabeled bipolar cells were only seen in strata 4/5. In both strata 1 and 4/5, synaptic inputs to labeled amacrine cells were from both unlabeled amacrine cells and labeled bipolar cells. The serotonergic amacrine cells had many more synaptic interactions in stratum 1 than in strata 4/5 which supports the role of serotonergic bipolar cells in the OFF pathway of retinal processing. Interactions between serotonergic bipolar and amacrine cells may play an important role in visual processing.


1993 ◽  
Vol 10 (5) ◽  
pp. 907-914 ◽  
Author(s):  
Charles L. Zucker ◽  
Berndt Ehinger

AbstractThe distribution of glycine receptors in the turtle retina was studied with the aid of a monoclonal antibody that detects the 93-kD protein associated with the strychnine-sensitive glycine receptor. Light microscopically, receptors were found in the inner plexiform layer and, more sparsely, in the innermost parts of the inner nuclear layer. No receptors were seen to be associated with photoreceptor cells, horizontal cells, or any other structures in the distal inner nuclear layer or outer plexiform layer. Ultrastructurally, glycine receptors were found on the inner face of postsynaptic membranes of processes from amacrine and presumed ganglion cells and always involved amacrine cell processes as the presynaptic element. Such glycine receptor immunoreactive synapses onto amacrine cell processes were distributed throughout the inner plexiform layer with a peak density near the middle. On the other hand, output synapses onto ganglion cell processes displaying immunoreactive glycine receptor sites showed a bimodal distribution in the inner plexiform layer. Glycine receptor immunoreactivity was not detected on bipolar cells, but presumed glycine-utilizing processes (i.e. those presynaptic to immunoreactive glycine receptors) were occasionally found to be postsynaptic in bipolar cell dyads. The majority of the synaptic input to the presumed glycine-utilizing amacrine cell processes was from other amacrine processes, some of which were themselves glycine utilizing. The observations suggest that glycinergic synapses in the turtle retina are, to a large extent, engaged in processing interamacrine signals.


2018 ◽  
Author(s):  
Robert E. Marc ◽  
Crystal Sigulinsky ◽  
Rebecca L. Pfeiffer ◽  
Daniel Emrich ◽  
James R. Anderson ◽  
...  

AbstractAll superclasses of retinal neurons display some form of electrical coupling including the key neurons of the inner plexiform layer: bipolar cells (BCs), amacrine or axonal cells (ACs) and ganglion cells (GCs). However, coupling varies extensively by class. For example, mammalian rod bipolar cells form no gap junctions at all, while all cone bipolar cells form class-specific coupling arrays, many of them homocellular in-superclass arrays. Ganglion cells are unique in that classes with coupling predominantly form heterocellular cross-class arrays of ganglion cell::amacrine cell (GC::AC) coupling in the mammalian retina. Ganglion cells are the least frequent superclass in the inner plexiform layer and GC::AC gap junctions are sparsely arrayed amidst massive cohorts of AC::AC, bipolar cell BC::BC, and AC::BC gap junctions. Many of these gap junctions and most ganglion cell gap junctions are suboptical, complicating analysis of specific ganglion cells. High resolution 2 nm TEM analysis of rabbit retinal connectome RC1 allows quantitative GC::AC coupling maps of identified ganglion cells. Ganglion cells classes apparently avoid direct cross-class homocellular coupling altogether even though they have opportunities via direct membrane touches, while transient OFF alpha ganglion cells and transient ON directionally selective (DS) ganglion cells are strongly coupled to distinct amacrine / axonal cell cohorts.A key feature of coupled ganglion cells is intercellular metabolite flux. Most GC::AC coupling involves GABAergic cells (γ+ amacrine cells), which results in significant GABA flux into ganglion cells. Surveying GABA coupling signatures in the ganglion cell layer across species suggests that the majority of vertebrate retinas engage in GC::AC coupling.Multi-hop synaptic queries of the entire RC1 connectome clearly profiles the coupled amacrine and axonal cells. Photic drive polarities and source bipolar cell class selec-tivities are tightly matched across coupled cells. OFF alpha ganglion cells are coupled to OFF γ+ amacrine cells and transient ON DS ganglion cells are coupled to ON γ+ amacrine cells including a large interstitial axonal cell (IAC). Synaptic tabulations show close matches between the classes of bipolar cells sampled by the coupled amacrine and ganglion cells. Further, both ON and OFF coupling ganglion networks show a common theme: synaptic asymmetry whereby the coupled γ+ neurons are also presynaptic to ganglion cell dendrites from different classes of ganglion cells outside the coupled set. In effect, these heterocellular coupling patterns enable an excited ganglion cell to directly inhibit nearby ganglion cells of different classes. Similarly, coupled γ+ amacrine cells engaged in feedback networks can leverage the additional gain of bipolar cell synapses in shaping the signaling of a spectrum of downstream targets based on their own selective coupling with ganglion cells.


2001 ◽  
Vol 18 (5) ◽  
pp. 741-751 ◽  
Author(s):  
P.T. JOHNSON ◽  
M.A. RAVEN ◽  
B.E. REESE

Photoreceptors in the ferret's retina have been shown to project transiently to the inner plexiform layer (IPL) prior to their differentiation of an outer segment. On postnatal day 15 (P-15), when this projection achieves maximal density, the photoreceptors projecting into the IPL extend primarily to one of two depths, coincident with the processes of cholinergic amacrine cells. The present study has used an excitotoxic approach employing subcutaneous injections of l-glutamate to ablate these cholinergic amacrine cells on P-7, in order to see whether their elimination alters this targeting of photoreceptor terminals within the IPL. The near-complete elimination of cholinergic amacrine cells at P-15 was confirmed, although the population of retinal ganglion cells was also affected, being depleted by roughly 50%. The rod opsin-immunopositive terminals in such treated ferrets no longer showed a stratified distribution, being found throughout the depth of the IPL, as well as extending into the ganglion cell layer. This effect should not be due to the partial loss of retinal ganglion cells, however, since optic nerve transection at P-2, which eliminates the ganglion cells entirely while leaving the cholinergic amacrine cell population intact, was shown not to affect the stratification pattern of the photoreceptors within the IPL. These results strongly suggest that the targeting of the photoreceptor terminals to discrete strata within the IPL is dependent upon the cholinergic amacrine cell processes.


2008 ◽  
Vol 25 (5-6) ◽  
pp. 635-645 ◽  
Author(s):  
JINJUAN CUI ◽  
ZHUO-HUA PAN

AbstractTwo groups of retinal cone bipolar cells (CBCs) in rats were found to express voltage-gated Na+ channels. The axon terminals of the first group stratify in sublamina 2 of the inner plexiform layer (IPL) and partially overlap with the OFF-cholinergic band. This group was identified as type 3 CBCs. The axon terminals of the second group stratify in sublamina 3 of the IPL, slightly distal to the ON-cholinergic band. Cells of this second group resemble type 5 CBCs. In addition, we observed another group of ON-type CBCs with terminal stratification similar to that of the second group. However, this latter group did not show any Na+ current, instead exhibiting a large hyperpolarization-activated cyclic nucleotide-gated cation current, suggesting the existence of two subclasses of physiologically distinct type 5 CBCs. Both groups of Na+-expressing bipolar cells were capable of generating a rapid tetrodotoxin-sensitive action potential as revealed by current injection. Multiple spike-like potentials were also observed in some of these cells. Results of this study provide valuable insights into the function of voltage-gated Na+ channels of retinal bipolar cells in retinal processing.


2000 ◽  
Vol 17 (1) ◽  
pp. 1-9 ◽  
Author(s):  
DAVID V. POW ◽  
ANITA E. HENDRICKSON

Previous studies show that glycine transporter-1 (glyt-1) is a consistent membrane marker of adult retinal neurons that are likely to release glycine at their synaptic terminals (Pow, 1998; Vaney et al., 1998; Pow & Hendrickson, 1999). The current study investigated when glyt-1 immunoreactivity appeared in the postnatal rat retina, and whether all glycine-containing neurons also labelled for glyt-1. Ganglion cells, horizontal cells, and photoreceptors showed transient labelling. Many cells in the ganglion cell layer are immunoreactive for both glycine and glyt-1 at postnatal day (Pd) 1 but both are minimal by Pd5. Transient immunoreactivity for both glyt-1 and glycine was observed in presumptive horizontal cells between Pd5 and Pd10. At Pd1 many cells in the outer part of the retina which resembled immature photoreceptors were heavily labelled for glycine, but did not express glyt-1; these disappeared at older ages. These findings suggest diverse mechanisms and transient roles for glycine in the developing rat retina. In the adult rat retina, a subpopulation of amacrine cells are prominently immunoreactive for both glycine and glyt-1. These cells labelled for glycine at Pd1, but did not express significant levels of glyt-1 until Pd5. Processes from these amacrine cells did not reach the inner half of the inner plexiform layer until Pd10–14. Bipolar cells became glycine-IR between Pd10 and Pd14, but consistently lacked any glyt-1 immunoreactivity. This temporal pattern of labelling strongly indicates that bipolar cells label for glycine when gap junctions become functional between glycine/glyt-1 immunoreactive amacrine cells and cone bipolar cells.


Sign in / Sign up

Export Citation Format

Share Document