Synaptic connections involving immunoreactive glycine receptors in the turtle retina

1993 ◽  
Vol 10 (5) ◽  
pp. 907-914 ◽  
Author(s):  
Charles L. Zucker ◽  
Berndt Ehinger

AbstractThe distribution of glycine receptors in the turtle retina was studied with the aid of a monoclonal antibody that detects the 93-kD protein associated with the strychnine-sensitive glycine receptor. Light microscopically, receptors were found in the inner plexiform layer and, more sparsely, in the innermost parts of the inner nuclear layer. No receptors were seen to be associated with photoreceptor cells, horizontal cells, or any other structures in the distal inner nuclear layer or outer plexiform layer. Ultrastructurally, glycine receptors were found on the inner face of postsynaptic membranes of processes from amacrine and presumed ganglion cells and always involved amacrine cell processes as the presynaptic element. Such glycine receptor immunoreactive synapses onto amacrine cell processes were distributed throughout the inner plexiform layer with a peak density near the middle. On the other hand, output synapses onto ganglion cell processes displaying immunoreactive glycine receptor sites showed a bimodal distribution in the inner plexiform layer. Glycine receptor immunoreactivity was not detected on bipolar cells, but presumed glycine-utilizing processes (i.e. those presynaptic to immunoreactive glycine receptors) were occasionally found to be postsynaptic in bipolar cell dyads. The majority of the synaptic input to the presumed glycine-utilizing amacrine cell processes was from other amacrine processes, some of which were themselves glycine utilizing. The observations suggest that glycinergic synapses in the turtle retina are, to a large extent, engaged in processing interamacrine signals.

1991 ◽  
Vol 7 (6) ◽  
pp. 611-618 ◽  
Author(s):  
Roberta G. Pourcho ◽  
Michael T. Owczarzak

AbstractImmunocytochemical techniques were used to localize strychnine-sensitive glycine receptors in cat retina. Light microscopy showed staining in processes ramifying throughout the inner plexiform layer and in cell bodies of both amacrine and ganglion cells. At the electron-microscopic level, receptor immunoreactivity was seen to be clustered at sites postsynaptic to amacrine cells. In contrast, bipolar cells were neither presynaptic nor postsynaptic elements at sites of glycine receptor staining. Double-label studies verified the presence of glycine immunoreactivity in amacrine terminals presynaptic to glycine receptors. These findings support a role for glycine as an inhibitory neurotransmitter in amacrine cells.


2001 ◽  
Vol 18 (5) ◽  
pp. 741-751 ◽  
Author(s):  
P.T. JOHNSON ◽  
M.A. RAVEN ◽  
B.E. REESE

Photoreceptors in the ferret's retina have been shown to project transiently to the inner plexiform layer (IPL) prior to their differentiation of an outer segment. On postnatal day 15 (P-15), when this projection achieves maximal density, the photoreceptors projecting into the IPL extend primarily to one of two depths, coincident with the processes of cholinergic amacrine cells. The present study has used an excitotoxic approach employing subcutaneous injections of l-glutamate to ablate these cholinergic amacrine cells on P-7, in order to see whether their elimination alters this targeting of photoreceptor terminals within the IPL. The near-complete elimination of cholinergic amacrine cells at P-15 was confirmed, although the population of retinal ganglion cells was also affected, being depleted by roughly 50%. The rod opsin-immunopositive terminals in such treated ferrets no longer showed a stratified distribution, being found throughout the depth of the IPL, as well as extending into the ganglion cell layer. This effect should not be due to the partial loss of retinal ganglion cells, however, since optic nerve transection at P-2, which eliminates the ganglion cells entirely while leaving the cholinergic amacrine cell population intact, was shown not to affect the stratification pattern of the photoreceptors within the IPL. These results strongly suggest that the targeting of the photoreceptor terminals to discrete strata within the IPL is dependent upon the cholinergic amacrine cell processes.


1982 ◽  
Vol 214 (1196) ◽  
pp. 403-415 ◽  

Intracellular recordings were obtained from amacrine cells afterwards identified morphologically by horseradish peroxidase injection. There is a correlation between the time course of the photoresponses and the distribution of the cell processes across the inner plexiform layer (i. p. l.). Cells producing the shortest duration, transient ‘on‒off’ photoresponses branched in a single, narrow stratum of the i. p. l. (3‒7 μm across). Transient photoresponses with a longer time course were recorded from cells branching in a thicker stratum of i. p. l. (up to 20 μm), or from bistratified cells. Amacrine cells producing sustained centre-on or centre-off photoresponses were radially diffused across the whole i. p. l.; therefore this type of photoresponse need not be associated with a specific cellular stratification within the i. p. l. It is concluded that the two main functional types of amacrine cell, i. e. transient on‒off and sustained centre-on and centre-off, are subject to different structural organization of inputs than are the homologous physiological types of ganglion cells in this species, in the cat and in the carp. In a summary diagram the observed characteristics of the photoresponses are tentatively explained in term s of a non-homogeneous distribution of bipolar synaptic inputs along amacrine cell processes.


1990 ◽  
Vol 5 (1) ◽  
pp. 17-28 ◽  
Author(s):  
Margaret A. Koontz ◽  
Anita E. Hendrickson

AbstractThe distribution patterns of GABA immunoreactive (+) and immunonegative (−) amacrine cell synapses and profiles in the inner plexiform layer (IPL) were analyzed in three macaque monkey retinas using postembedding electron-microscopic (EM) immunogold cytochemistry. Synapses and profiles were counted at 5% intervals throughout the IPL depth in three EM montages (total area = 6509 μm2), with 0% depth at the inner nuclear layer/IPL border. Nearly 70% of all amacrine synapses were GABA+, and they contacted all major classes of neurons that arborize in the IPL: bipolars (45%), ganglion cells (25%), and GABA+ (20%) and GABA− (10%) amacrines. A major relationship was seen between GABA+ amacrine processes and bipolar terminals: 76% of all amacrine-to-bipolar synapses were GABA+, and 82% of bipolar output dyads contained at least one GABA+ amacrine.GABA+ amacrine profiles (N = 2455) were concentrated in three wide bands at IPL depths of 0–25%, 40–60%, and 75–100%, corresponding to the dense bands seen with light-microscopic immunocytochemistry. In contrast, GABA+ amacrine synapses (N = 1081) were distributed evenly throughout the IPL depth, rather than being confined to the three dense bands. GABA− amacrine synapses (N = 516) were concentrated at 40% and 60% depths.Each category of amacrine output synapses had a characteristic pattern of stratification in the IPL. GABA+amacrine-to-bipolar synapses occurred throughout the IPL but were most frequent at 20% and 80% IPL depths, where the dendrites of midget cone bipolars arborize (Polyak, 1941). In contrast, GABA+amacrine-to-ganglion cell synapses were concentrated at 30% and 70% IPL depths, near the dendritic arborizations of parasol ganglion cells (Watanabe & Rodieck, 1989). GABA+ synapses onto bipolars and amacrines were also concentrated at the level of rod bipolar terminals. GABA+ amacrines must play significant but different roles in ON and OFF midget and parasol pathways as well as the rod pathway.


2002 ◽  
Vol 19 (3) ◽  
pp. 299-305 ◽  
Author(s):  
DAVID W. MARSHAK ◽  
ELIZABETH S. YAMADA ◽  
ANDREA S. BORDT ◽  
WENDY C. PERRYMAN

A labeled ON parasol ganglion cell from a macaque retina was analyzed in serial, ultrathin sections. It received 13% of its input from diffuse bipolar cells. These directed a large proportion of their output to amacrine cells but received a relatively small proportion of their amacrine cell input via feedback synapses. In these respects, they were similar to the DB3 bipolar cells that make synapses onto OFF parasol cells. Bipolar cell axons that contacted the ON parasol cell in stratum 4 of the inner plexiform layer always made synapses onto the dendrite, and therefore, the number of bipolar cell synapses onto these ganglion cells could be estimated reliably by light microscopy in the future. Amacrine cells provided the majority of inputs to the ON parasol cell. Only a few of the presynaptic amacrine cell processes received inputs from the same bipolar cells as the parasol cells, and most of the presynaptic amacrine cell processes did not receive any inputs at all within the series. These findings suggest that most of the inhibitory input to the ON parasol cell originates from other areas of the retina. Amacrine cells presynaptic to the parasol ganglion cell interacted very infrequently with other neurons in the circuit, and therefore, they would be expected to act independently, for the most part.


2001 ◽  
Vol 18 (5) ◽  
pp. 781-787 ◽  
Author(s):  
TATIANA GRÜNDER ◽  
KONRAD KOHLER ◽  
ELKE GUENTHER

To determine how a progressive loss of photoreceptor cells and the concomitant loss of glutamatergic input to second-order neurons can affect inner-retinal signaling, glutamate receptor expression was analyzed in the Royal College of Surgeons (RCS) rat, an animal model of retinitis pigmentosa. Immunohistochemistry was performed on retinal sections of RCS rats and congenic controls between postnatal (P) day 3 and the aged adult (up to P350) using specific antibodies against N-methyl-D-aspartate (NMDA) subunits. All NMDA subunits (NR1, NR2A–2D) were expressed in control and dystrophic retinas at all ages, and distinct patterns of labeling were found in horizontal cells, subpopulations of amacrine cells and ganglion cells, as well as in the outer and inner plexiform layer (IPL). NR1 immunoreactivity in the inner plexiform layer of adult control retinas was concentrated in two distinct bands, indicating a synaptic localization of NMDA receptors in the OFF and ON signal pathways. In the RCS retina, these bands of NR1 immunoreactivity in the IPL were much weaker in animals older than P40. In parallel, NR2B immunoreactivity in the outer plexiform layer (OPL) of RCS rats was always reduced compared to controls and vanished between P40 and P120. The most striking alteration observed in the degenerating retina, however, was a strong expression of NR1 immunoreactivity in Müller cell processes in the inner retina which was not observed in control animals and which was present prior to any visible sign of photoreceptor degeneration. The results suggest functional changes in glutamatergic receptor signaling in the dystrophic retina and a possible involvement of Müller cells in early processes of this disease.


1997 ◽  
Vol 14 (6) ◽  
pp. 1089-1096 ◽  
Author(s):  
Bao-Song Zhu ◽  
Ian L. Gibbins

AbstractThe entire population of ganglion cells in the retina of the toad Bufo marinus was labeled by retrograde transport of a lysine-fixable biotinylated dextran amine of 3000 molecular weight. Synaptic connections between bipolar, amacrine, and ganglion cells in the inner plexiform layer were quantitatively analyzed, with emphasis on synaptic inputs to labeled ganglion cell dendrites. Synapses onto ganglion cell dendrites comprised 47% of a total of 1234 identified synapses in the inner plexiform layer. Approximately half of the bipolar or amacrine cell synapses were directed onto ganglion cell dendrites, while the rest were made mainly onto amacrine cell dendrites. Most of the synaptic inputs to ganglion cell dendrites derived from amacrine cell dendrites (84%), with the rest from bipolar cell terminals. Synaptic inputs to ganglion cell dendrites were distributed relatively uniformly throughout all sublaminae of the inner plexiform layer. The present study provides unambiguous identification of ganglion cell dendrites including very fine processes, enabling a detailed analysis of the types and distribution of synaptic inputs from the bipolar and amacrine cell to the ganglion cells. The retrograde tracing technique used in the present study will prove to be a useful tool for identifying synaptic inputs to ganglion cell dendrites from neurochemically identified bipolar and amacrine cell types in the retina.


2018 ◽  
Author(s):  
Robert E. Marc ◽  
Crystal Sigulinsky ◽  
Rebecca L. Pfeiffer ◽  
Daniel Emrich ◽  
James R. Anderson ◽  
...  

AbstractAll superclasses of retinal neurons display some form of electrical coupling including the key neurons of the inner plexiform layer: bipolar cells (BCs), amacrine or axonal cells (ACs) and ganglion cells (GCs). However, coupling varies extensively by class. For example, mammalian rod bipolar cells form no gap junctions at all, while all cone bipolar cells form class-specific coupling arrays, many of them homocellular in-superclass arrays. Ganglion cells are unique in that classes with coupling predominantly form heterocellular cross-class arrays of ganglion cell::amacrine cell (GC::AC) coupling in the mammalian retina. Ganglion cells are the least frequent superclass in the inner plexiform layer and GC::AC gap junctions are sparsely arrayed amidst massive cohorts of AC::AC, bipolar cell BC::BC, and AC::BC gap junctions. Many of these gap junctions and most ganglion cell gap junctions are suboptical, complicating analysis of specific ganglion cells. High resolution 2 nm TEM analysis of rabbit retinal connectome RC1 allows quantitative GC::AC coupling maps of identified ganglion cells. Ganglion cells classes apparently avoid direct cross-class homocellular coupling altogether even though they have opportunities via direct membrane touches, while transient OFF alpha ganglion cells and transient ON directionally selective (DS) ganglion cells are strongly coupled to distinct amacrine / axonal cell cohorts.A key feature of coupled ganglion cells is intercellular metabolite flux. Most GC::AC coupling involves GABAergic cells (γ+ amacrine cells), which results in significant GABA flux into ganglion cells. Surveying GABA coupling signatures in the ganglion cell layer across species suggests that the majority of vertebrate retinas engage in GC::AC coupling.Multi-hop synaptic queries of the entire RC1 connectome clearly profiles the coupled amacrine and axonal cells. Photic drive polarities and source bipolar cell class selec-tivities are tightly matched across coupled cells. OFF alpha ganglion cells are coupled to OFF γ+ amacrine cells and transient ON DS ganglion cells are coupled to ON γ+ amacrine cells including a large interstitial axonal cell (IAC). Synaptic tabulations show close matches between the classes of bipolar cells sampled by the coupled amacrine and ganglion cells. Further, both ON and OFF coupling ganglion networks show a common theme: synaptic asymmetry whereby the coupled γ+ neurons are also presynaptic to ganglion cell dendrites from different classes of ganglion cells outside the coupled set. In effect, these heterocellular coupling patterns enable an excited ganglion cell to directly inhibit nearby ganglion cells of different classes. Similarly, coupled γ+ amacrine cells engaged in feedback networks can leverage the additional gain of bipolar cell synapses in shaping the signaling of a spectrum of downstream targets based on their own selective coupling with ganglion cells.


1994 ◽  
Vol 11 (6) ◽  
pp. 1193-1203 ◽  
Author(s):  
Chen-Yu Yang ◽  
Stephen Yazulla

AbstractThe presence of inhibitory bipolar cells in salamander retina was investigated by a comparative analysis of the distribution of glutamate- and GABA-immunoreactivities (GLU-IR; GABA-IR) using a postembedding immunocytochemical method. GLU-IR was found in virtually all photoreceptors, bipolar cells and ganglion cells, neuronal elements that transfer information vertically through the retina. GLU-IR also was found in numerous amacrine cells in the mid and proximal inner nuclear layer as well as in the cytoplasm of horizontal cells, while the nucleus of horizontal cells was either lightly labeled or not labeled at all. GLU-IR was found in the outer plexiform layer and intensely in the inner plexiform layer, in which there was no apparent sublamination. Forty-seven percent of Type IB bipolar cells in the distal inner nuclear layer and 13% of the displaced bipolar cells were GABA-IR. All bipolar cells were also GLU-IR, indicating that GABA-IR bipolar cells were a subset of GLU-IR bipolar cells rather than a separate population. About 12% of the Type IB bipolar cells were moderately GABA-IR and likely comprised a GABAergic subtype. GLU-IR levels in the presumed GABAergic bipolar cells were higher than in other purely GLU-IR bipolar cells suggesting that these GABA-IR bipolar cells are glutamatergic as well. All of the displaced bipolar cells were only lightly GABA-IR, indicating that displaced bipolar cells comprise a more homogeneous class of glutamatergic cell than orthotopic bipolar cells. GAD-IR co-localized with GABA-IR in orthotopic but not displaced bipolar cells, further supporting the idea that some orthotopic bipolar cells are GABAergic. A small proportion of bipolar cells in salamander retina contain relatively high levels of both GABA and glutamate. Co-release of these substances by bipolar cells could contribute to the “push-pull” modulation of ganglion cell responses.


1999 ◽  
Vol 16 (5) ◽  
pp. 957-966 ◽  
Author(s):  
ULRIKE GRÜNERT ◽  
KRISHNA K. GHOSH

Glycine is a major inhibitory neurotransmitter in the mammalian retina and has been shown to influence the responses of ganglion cells. Midget and parasol ganglion cells serve distinct physiological roles in the primate retina and show differences in their response characteristics to light stimuli. In the present study, we addressed the question of whether the expression of glycine receptors differs in midget and parasol ganglion cells. Ganglion cells in the retinae of marmoset and macaque monkeys were injected with Neurobiotin in a live in vitro retinal whole-mount preparation. Retinal pieces were then processed with an antibody against the α1 subunit of the glycine receptor. Strong punctate immunoreactivity indicative of synaptic localization is present in the ON and OFF sublamina of the inner plexiform layer. Many of the immunoreactive puncta coincide with the dendrites of both midget and parasol ganglion cells. Immunoreactive puncta are present on distal and proximal dendrites of ON and OFF cells. These results suggest that ON and OFF midget and parasol cells do not differ with respect to the distribution of the α1 subunit of the glycine receptor.


Sign in / Sign up

Export Citation Format

Share Document