From wood to vent: first cocculinid limpet associated with hydrothermal activity discovered in the Weddell Sea

2020 ◽  
Vol 32 (5) ◽  
pp. 354-366
Author(s):  
Chong Chen ◽  
Katrin Linse

AbstractLush ‘oases’ of life seen in chemosynthetic ecosystems such as hot vents and cold seeps represent rare, localized exceptions to the generally oligotrophic deep ocean floor. Organic falls, best known from sunken wood and whale carcasses, are additional sources of such oases. Kemp Caldera (59°42'S, 28°20'W) in the Weddell Sea exhibits active hydrothermal vents and a natural whale fall in close proximity, where an undescribed cocculinid limpet was found living in both types of chemosynthetic habitats. This represents the first member of the gastropod order Cocculinida discovered from hot vents, and also the first record from the Southern Ocean. Here, we applied an integrative taxonomy framework incorporating traditional dissection, electron microscopy, genetic sequencing and 3D anatomical reconstruction through synchrotron computed tomography in order to characterize this species. Together, our data revealed an unusual member of the genus Cocculina with a highly modified radula for feeding on bacterial film, described herein as Cocculina enigmadonta n. sp. Its phylogenetically derived position within the largely wood-inhabiting Cocculina indicates that it probably evolved from an ancestor adapted to living on sunken wood, providing a compelling case of the ‘stepping stone’ evolutionary trajectory from organic falls to seeps and vents.

2020 ◽  
Vol 96 (2) ◽  
pp. 699-714
Author(s):  
Jong Guk Kim ◽  
Jimin Lee

The genus Smacigastes Ivanenko & Defaye, 2004 (Harpacticoida, Copepoda) is the most primitive genus in the family Tegastidae Sars, 1904, occurring in deep-sea chemosynthetic environments, such as hydrothermal vents, cold seeps, whale falls and wood falls. Our exploration of the Onnuri Vent Field, the sixth active hydrothermal vent system in the Central Indian Ridge, resulted in the discovery of a new species in the genus Smacigastes. A detailed morphological analysis of S. pumilasp. nov. reveals that it most resembles S. barti Gollner, Ivanenko & Martínez Arbizu, 2008, described from a hydrothermal vent in the East Pacific Ridge; the new species can be distinguished from the existing species by the 8-segmented female antennule, the absence of an abexopodal seta on the antennary basis, the mandibular exopod represented by a single seta and the exopod of the first leg with five setae. This is the first record of Smacigastes in the Indian Ocean. A dichotomous key to species of the genus Smacigastes worldwide is provided.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Camille Hayatte Akhoudas ◽  
Jean-Baptiste Sallée ◽  
F. Alexander Haumann ◽  
Michael P. Meredith ◽  
Alberto Naveira Garabato ◽  
...  

AbstractThe Atlantic sector of the Southern Ocean is the world’s main production site of Antarctic Bottom Water, a water-mass that is ventilated at the ocean surface before sinking and entraining older water-masses—ultimately replenishing the abyssal global ocean. In recent decades, numerous attempts at estimating the rates of ventilation and overturning of Antarctic Bottom Water in this region have led to a strikingly broad range of results, with water transport-based calculations (8.4–9.7 Sv) yielding larger rates than tracer-based estimates (3.7–4.9 Sv). Here, we reconcile these conflicting views by integrating transport- and tracer-based estimates within a common analytical framework, in which bottom water formation processes are explicitly quantified. We show that the layer of Antarctic Bottom Water denser than 28.36 kg m$$^{-3}$$ - 3 $$\gamma _{n}$$ γ n is exported northward at a rate of 8.4 ± 0.7 Sv, composed of 4.5 ± 0.3 Sv of well-ventilated Dense Shelf Water, and 3.9 ± 0.5 Sv of old Circumpolar Deep Water entrained into cascading plumes. The majority, but not all, of the Dense Shelf Water (3.4 ± 0.6 Sv) is generated on the continental shelves of the Weddell Sea. Only 55% of AABW exported from the region is well ventilated and thus draws down heat and carbon into the deep ocean. Our findings unify traditionally contrasting views of Antarctic Bottom Water production in the Atlantic sector, and define a baseline, process-discerning target for its realistic representation in climate models.


2017 ◽  
Vol 4 ◽  
Author(s):  
Perrine Cruaud ◽  
Adrien Vigneron ◽  
Patricia Pignet ◽  
Jean-Claude Caprais ◽  
Françoise Lesongeur ◽  
...  

Author(s):  
Sabine Stöhr ◽  
Michel Segonzac

The animal communities associated with the deep-sea reducing environment have been studied for almost 30 years, but until now only a single species of ophiuroid, Ophioctenella acies, has been found at both hydrothermal vents and methane cold seeps. Since the faunal overlap between vent and seep communities is small and many endemic species have been found among other taxa (e.g. Mollusca, Crustacea), additional species of ophiuroids were expected at previously unstudied sites. Chemical compositions at reducing sites differ greatly from the nearby bathyal environment. Generally, species adapted to chemosynthetic environments are not found in non-chemosynthetic habitats, but occasional visitors of other bathyal species to vent and seep sites have been recorded among many taxa except ophiuroids. This paper presents an analysis of the ophiuroid fauna found at hydrothermal vents and non-reducing nearby sites on the Mid-Atlantic Ridge and on methane cold seeps in the Gulf of Mexico, at Blake Ridge off South Carolina and south of Barbados. In addition to O. acies, four species were found at vents, Ophiactis tyleri sp. nov., Ophiocten centobi, Ophiomitra spinea and Ophiotreta valenciennesi rufescens. While Ophioctenella acies appears to be restricted to chemosynthetic areas, the other four species were also found in other bathyal habitats. They also occur in low numbers (mostly single individuals), whereas species adapted to hydrothermal areas typically occur in large numbers. Ophioscolex tripapillatus sp. nov. and Ophiophyllum atlanticum sp. nov. are described from nearby non-chemosynthetic sites. In a cold seep south of Barbados, three species of ophiuroids were found, including Ophioctenella acies, Amphiura sp., Ophiacantha longispina sp. nov. and Ophioplinthaca chelys. From the cold seeps at Blake Ridge and the Gulf of Mexico, Ophienigma spinilimbatum gen. et sp. nov. is described, likely restricted to the reducing environment. Ophiotreta valenciennesi rufescens occurred abundantly among Lophelia corals in the Gulf of Mexico seeps, which is the first record of this species from the West Atlantic. Habitat descriptions complement the taxonomic considerations, and the distribution of the animals in reducing environments is discussed.


2020 ◽  
pp. 238-292 ◽  
Author(s):  
Richard J. Léveillé ◽  
S. Kim Juniper

2017 ◽  
Author(s):  
James B. Bell ◽  
William D. K. Reid ◽  
David A. Pearce ◽  
Adrian G. Glover ◽  
Christopher J. Sweeting ◽  
...  

Abstract. Sedimented hydrothermal vents are those in which hydrothermal fluid is discharged through sediments and are among the least studied deep-sea ecosystems. We present a combination of microbial and biochemical data to assess trophodynamics between and within hydrothermally active and off-vent areas of the Bransfield Strait (1050–1647 m depth). Microbial composition, biomass and fatty acid signatures varied widely between and within vent and non-vent sites and provided evidence of diverse metabolic activity. Several species showed diverse feeding strategies and occupied different trophic positions in vent and nonvent areas. Stable isotope values of consumers were generally not consistent with feeding structure morphology. Niche area and the diversity of microbial fatty acids reflected trends in species diversity and was lowest at the most hydrothermally active site. Faunal utilisation of chemosynthetic activity was relatively limited but was detected at both vent and non-vent sites as evidenced by carbon and sulphur isotopic signatures, suggesting that hydrothermal activity can affect trophodynamics over a much wider area than previously thought.


2007 ◽  
Vol 28 (1) ◽  
pp. 208-218 ◽  
Author(s):  
Garth L. Brand ◽  
Robin V. Horak ◽  
Nadine Le Bris ◽  
Shana K. Goffredi ◽  
Susan L. Carney ◽  
...  

2019 ◽  
Vol 18 (05) ◽  
pp. 416-419 ◽  
Author(s):  
Sven Thatje ◽  
Alastair Brown ◽  
Claus-Dieter Hillenbrand

AbstractAbout 400 subglacial lakes are known from Antarctica. The question of whether life unique of subglacial lakes exists has been paramount since their discovery. Despite frequent evidence of microbial life mostly from accretion ice, subglacial lakes are characterized by physiologically hostile conditions to metazoan life, as we know it. Pure water (salinity ≤0.4–1.2%), extreme cold (−3°C), high hydrostatic pressure, areas of limited or no oxygen availability and permanent darkness altogether require physiological adaptations to these harsh conditions. The record of gene sequences including some associated with hydrothermal vents does foster the idea of metazoan life in Lake Vostok. Here, we synthesize the physico-chemical environment surrounding sub-glacial lakes and potential sites of hydrothermal activity and advocate that the physico-chemical stability found at these sites may be the most likely sites for metazoan life to exist. The unique conditions presented by Lake Vostok may also offer an outlook on life to be expected in extra-terrestrial subglacial environments, such as on Jupiter's moon Europa or Saturn's moon Enceladus.


Sign in / Sign up

Export Citation Format

Share Document