Nonclassical symmetry reductions and exact solutions of the Zabolotskaya–Khokhlov equation

1992 ◽  
Vol 3 (4) ◽  
pp. 381-414 ◽  
Author(s):  
Peter A. Clarkson ◽  
Simon Hood

In this paper, new non-classical symmetry reductions and exact solutions for the 2+1- dimensional, time-independent and time-dependent, dissipative Zabolotskaya-Khokhlov equations in both cartesian and cylindrical coordinates, are presented. These are obtained using the Direct Method, which was originally developed by Clarkson & Kruskal (1989) to study symmetry reductions of the Boussinesq equation, and which involves no group theoretic techniques. In particular, we derive exact solutions of these Zabolotskaya-Khokhlov equations expressible in terms of elementary functions, Weierstrass elliptic and zeta functions, Weber-Hermite functions and Airy functions. Additionally, it is shown that some previously known solutions of these equations actually arise from non-classical symmetries.

Author(s):  
R. M. CHERNIHA ◽  
V. V. DAVYDOVYCH

Abstract Q-conditional (non-classical) symmetries of the known three-component reaction-diffusion (RD) system [K. Aoki et al. Theor. Popul. Biol. 50, 1–17 (1996)] modelling interaction between farmers and hunter-gatherers are constructed for the first time. A wide variety of Q-conditional symmetries are found, and it is shown that these symmetries are not equivalent to the Lie symmetries. Some operators of Q-conditional (non-classical) symmetry are applied for finding exact solutions of the RD system in question. Properties of the exact solutions (in particular, their asymptotic behaviour) are identified and possible biological interpretation is discussed.


1950 ◽  
Vol 17 (3) ◽  
pp. 275-282
Author(s):  
H. J. Reissner ◽  
G. J. Wennagel

Abstract The theory of torsion of noncylindrical bodies of revolution, initiated by J. H. Michell and A. Föppl, is stated by a basic differential equation of the circumferential displacement and by a boundary condition of the shear stress along the generator surface. The solution of these two equations by the “direct” method of first assuming the boundary shape has not lent itself to closed solutions in terms of elementary functions, so that only approximation, infinite series, and experimental methods have been applied. A semi-inverse method analogous to Saint Venant’s semi-inverse method for cylindrical bodies has the disadvantage of the restriction to special boundary shapes but the advantage of exact solutions by means of elementary functions. By this method, bodies of conical, ellipsoidal, and hyperbolic boundary shapes have been obtained in a simple analysis. One class of integrals leading to other boundary shapes seems not to have been analyzed up to now, namely, the integrals in the form of a product of two functions of, respectively, axial (z) and radial (r) co-ordinates. A first suggestion of this possibility was given in Love’s treatise on the mathematical theory of elasticity. In the present paper, the classes of boundary shapes, displacements, and stress distributions are investigated analytically and numerically. The extent of the numerical investigation contains only the results of single-term integrals for full and hollow cross sections of technical interest. The detailed analysis of the boundary shapes, following from series integrals, presents essential mathematical obstacles. Overcoming these difficulties might lead to a multitude of solutions of interesting boundary shapes, and stress and strain distribution.


2009 ◽  
Vol 64 (9-10) ◽  
pp. 597-603 ◽  
Author(s):  
Zhong Zhou Dong ◽  
Yong Chen

By means of the generalized direct method, we investigate the (2+1)-dimensional dispersive long wave equations. A relationship is constructed between the new solutions and the old ones and we obtain the full symmetry group of the (2+1)-dimensional dispersive long wave equations, which includes the Lie point symmetry group S and the discrete groups D. Some new forms of solutions are obtained by selecting the form of the arbitrary functions, based on their relationship. We also find an infinite number of conservation laws of the (2+1)-dimensional dispersive long wave equations.


2021 ◽  
Vol 41 (5) ◽  
pp. 685-699
Author(s):  
Ivan Tsyfra

We study the relationship between the solutions of stationary integrable partial and ordinary differential equations and coefficients of the second-order ordinary differential equations invariant with respect to one-parameter Lie group. The classical symmetry method is applied. We prove that if the coefficients of ordinary differential equation satisfy the stationary integrable partial differential equation with two independent variables then the ordinary differential equation is integrable by quadratures. If special solutions of integrable partial differential equations are chosen then the coefficients satisfy the stationary KdV equations. It was shown that the Ermakov equation belong to a class of these equations. In the framework of the approach we obtained the similar results for generalized Riccati equations. By using operator of invariant differentiation we describe a class of higher order ordinary differential equations for which the group-theoretical method enables us to reduce the order of ordinary differential equation.


Author(s):  
T. M. Dunster

Uniform asymptotic expansions are derived for Whittaker’s confluent hypergeometric functions M κ , μ ( z ) and W κ , μ ( z ) , as well as the numerically satisfactory companion function W − κ , μ ( z   e − π i ) . The expansions are uniformly valid for μ → ∞ , 0 ≤ κ / μ ≤ 1 − δ < 1 and 0 ≤ arg ⁡ ( z ) ≤ π . By using appropriate connection and analytic continuation formulae, these expansions can be extended to all unbounded non-zero complex z . The approximations come from recent asymptotic expansions involving elementary functions and Airy functions, and explicit error bounds are either provided or available.


2012 ◽  
Vol 2012 ◽  
pp. 1-7 ◽  
Author(s):  
Rehana Naz ◽  
Mohammad Danish Khan ◽  
Imran Naeem

The nonclassical symmetries of boundary layer equations for two-dimensional and radial flows are considered. A number of exact solutions for problems under consideration were found in the literature, and here we find new similarity solution by implementing the SADE package for finding nonclassical symmetries.


2014 ◽  
Vol 21 (4) ◽  
pp. 643-671 ◽  
Author(s):  
H. Baran ◽  
I.S. Krasil'shchik ◽  
O.I. Morozov ◽  
P. Vojčák

2014 ◽  
Vol 2014 ◽  
pp. 1-8
Author(s):  
Lazhar Bougoffa

We propose a direct method for solving the general Riccati equationy′=f(x)+g(x)y+h(x)y2. We first reduce it into an equivalent equation, and then we formulate the relations between the coefficients functionsf(x),g(x), andh(x)of the equation to obtain an equivalent separable equation from which the previous equation can be solved in closed form. Several examples are presented to demonstrate the efficiency of this method.


Sign in / Sign up

Export Citation Format

Share Document