The Cahn–Hilliard equation with a concentration dependent mobility: motion by minus the Laplacian of the mean curvature

1996 ◽  
Vol 7 (3) ◽  
pp. 287-301 ◽  
Author(s):  
J. W. Cahn ◽  
C. M. Elliott ◽  
A. Novick-Cohen

We show by using formal asymptotics that the zero level set of the solution to the Cahn–Hilliard equation with a concentration dependent mobility approximates to lowest order in ɛ. an interface evolving according to the geometric motion,(where V is the normal velocity, Δ8 is the surface Laplacian and κ is the mean curvature of the interface), both in the deep quench limit and when the temperature θ is where є2 is the coefficient of gradient energy. Equation (0.1) may be viewed as motion by surface diffusion, and as a higher-order analogue of motion by mean curvature predicted by the bistable reaction-diffusion equation.

Author(s):  
Juncheng Wei ◽  
Matthias Winter

In this paper we construct new classes of stationary solutions for the Cahn–Hilliard equation by a novel approach.One of the results is as follows. Given a positive integer K and a (not necessarily non-degenerate) local minimum point of the mean curvature of the boundary, then there are boundary K-spike solutions whose peaks all approach this point. This implies that for any smooth and bounded domain there exist boundary K-spike solutions.The central ingredient of our analysis is the novel derivation and exploitation of a reduction of the energy to finite dimensions (lemma 3.5), where the variables are closely related to the peak locations.


Author(s):  
M. S. Longuet-Higgins

Imagine a nearly horizontal, statistically uniform, random surface ζ(x, y), Gaussian in the sense that the second derivatives , , have a normal joint distribution. The problem considered is the statistical distribution of the quantitywhere J and Ω denote the mean curvature and total curvature of the surface, respectively, and ν is a constant parameter.


Author(s):  
J. Aguirre ◽  
M. Escobedo

SynopsisWe study the blow-up of positive solutions of the Cauchy problem for the semilinear parabolic equationwhere u is a scalar function of the spatial variable x ∈ ℝN and time t > 0, a ∈ ℝV, a ≠ 0, 1 < p and 1 ≦ q. We show that: (a) if p > 1 and 1 ≦ q ≦ p, there always exist solutions which blow up in finite time; (b) if 1 < q ≦ p ≦ min {1 + 2/N, 1 + 2q/(N + 1)} or if q = 1 and 1 < p ≦ l + 2/N, then all positive solutions blow up in finite time; (c) if q > 1 and p > min {1 + 2/N, 1 + 2q/N + 1)}, then global solutions exist; (d) if q = 1 and p > 1 + 2/N, then global solutions exist.


2020 ◽  
Vol 26 ◽  
pp. 104
Author(s):  
Carlo Orrieri ◽  
Elisabetta Rocca ◽  
Luca Scarpa

We study a stochastic phase-field model for tumor growth dynamics coupling a stochastic Cahn-Hilliard equation for the tumor phase parameter with a stochastic reaction-diffusion equation governing the nutrient proportion. We prove strong well-posedness of the system in a general framework through monotonicity and stochastic compactness arguments. We introduce then suitable controls representing the concentration of cytotoxic drugs administered in medical treatment and we analyze a related optimal control problem. We derive existence of an optimal strategy and deduce first-order necessary optimality conditions by studying the corresponding linearized system and the backward adjoint system.


Mathematics ◽  
2020 ◽  
Vol 8 (10) ◽  
pp. 1835
Author(s):  
Giuseppe Maria Coclite ◽  
Lorenzo di Ruvo

The higher-order convective Cahn-Hilliard equation describes the evolution of crystal surfaces faceting through surface electromigration, the growing surface faceting, and the evolution of dynamics of phase transitions in ternary oil-water-surfactant systems. In this paper, we study the H3 solutions of the Cauchy problem and prove, under different assumptions on the constants appearing in the equation and on the mean of the initial datum, that they are well-posed.


Author(s):  
Matthieu Alfaro ◽  
Harald Garcke ◽  
Danielle Hilhorst ◽  
Hiroshi Matano ◽  
Reiner Schätzle

We consider the spatially inhomogeneous and anisotropic reaction–diffusion equation ut = m(x)−1 div[m(x)ap(x,∇u)] + ε−2f(u), involving a small parameter ε > 0 and a bistable nonlinear term whose stable equilibria are 0 and 1. We use a Finsler metric related to the anisotropic diffusion term and work in relative geometry. We prove a weak comparison principle and perform an analysis of both the generation and the motion of interfaces. More precisely, we show that, within the time-scale of order ε2|ln ε|, the unique weak solution uε develops a steep transition layer that separates the regions {uε ≈ 0} and {uε | 1}. Then, on a much slower time-scale, the layer starts to propagate. Consequently, as ε → 0, the solution uε converges almost everywhere (a.e.) to 0 in Ω−t and 1 in Ω+t , where Ω−t and Ω+t are sub-domains of Ω separated by an interface Гt, whose motion is driven by its anisotropic mean curvature. We also prove that the thickness of the transition layer is of order ε.


1995 ◽  
Vol 37 (2) ◽  
pp. 233-242 ◽  
Author(s):  
Shi-Jie Li

Let M be an n-dimensional connected submanifold in an mdimensional Euclidean space Em. Denote by δ the Laplacian of M associated with the induced metric. Then the position vector x and the mean curvature vector H of Min Em satisfyThis yields the following fact: a submanifold M in Em is minimal if and only if all coordinate functions of Em, restricted to M, are harmonic functions. In other words, minimal submanifolds in Emare constructed from eigenfunctions of δ with one eigenvalue 0. By using (1. 1), T. Takahashi proved that minimal submanifolds of a hypersphere of Em are constructed from eigenfunctions of δ with one eigenvalue δ (≠0). In [3, 4], Chen initiated the study of submanifolds in Em which are constructed from harmonic functions and eigenfunctions of δ with a nonzero eigenvalue. The position vector x of such a submanifold admits the following simple spectral decomposition:for some non-constant maps x0and xq, where A is a nonzero constant. He simply calls such a submanifold a submanifold of null 2-type.


Sign in / Sign up

Export Citation Format

Share Document