Macroscopic models for melting derived from averaging microscopic Stefan problems II: Effect of varying geometry and composition

2002 ◽  
Vol 13 (3) ◽  
pp. 261-282 ◽  
Author(s):  
A. A. LACEY ◽  
L. A. HERRAIZ

A mushy region is assumed to consist of a fine mixture of two distinct phases separated by free boundaries. A method of multiple scales, with restrictions on the form of the microscopic free boundaries, is used to derive a macroscopic model for the mushy region. The final model depends both on the microscopic structure and on how the free-boundary temperature varies with curvature (Gibbs–Thomson effect), kinetic undercooling, or, for an alloy, composition.

2000 ◽  
Vol 11 (2) ◽  
pp. 153-169 ◽  
Author(s):  
A. A. LACEY ◽  
L. A. HERRAIZ

A mushy region is assumed to consist of a fine mixture of two distinct phases separated by free boundaries. For simplicity, the fine structure is here taken to be periodic, first in one dimension, and then a lattice of squares in two dimensions. A method of multiple scales is employed, with a classical free-boundary problem being used to model the evolution of the two-phase microstructure. Then a macroscopic model for the mush is obtained by an averaging procedure. The free-boundary temperature is taken to vary according to Gibbs–Thomson and/or kinetic-undercooling effects.


2018 ◽  
Vol 30 (3) ◽  
pp. 529-556
Author(s):  
CHRISTOS V. NIKOLOPOULOS

The subject of the present paper is the derivation and analysis of mathematical models for the formation of a mushy region during calcium carbonate corrosion. More specifically there is emphasis on the variation of the overall diffusion resulting from the changing shape of a single pore due to corrosion process and on the resulting volume expansion of the material as the outcome of the transformation of calcium carbonate to gypsum. These models are derived by averaging, with the use of the multiple scales method applied on microscopic moving-boundary problems. The latter problems describe the transformation of calcium carbonate into gypsum in the microscopic scale. The derived macroscopic models are solved numerically with the use of an implicit in time, finite element method. The results of the simulations for various microstructure geometries in the micro-scale and a discussion are also presented.


The method of multiple scales is used to examine the slow modulation of a harmonic wave moving over the surface of a two dimensional channel. The flow is assumed inviscid and incompressible, but the basic flow takes the form of an arbitrary shear. The appropriate nonlinear Schrödinger equation is derived with coefficients that depend, in a complicated way, on the shear. It is shown that this equation agrees with previous work for the case of no shear; it also agrees in the long wave limit with the appropriate short wave limit of the Korteweg-de Vries equation, the shear being arbitrary. Finally, it is remarked that the stability of Stokes waves over any shear can be examined by using the results derived here.


2018 ◽  
Vol 211 ◽  
pp. 02008 ◽  
Author(s):  
Bhaben Kalita ◽  
S. K. Dwivedy

In this work a novel pneumatic artificial muscle is fabricated using golden muga silk and silicon rubber. It is assumed that the muscle force is a quadratic function of pressure. Here a single degree of freedom system is considered where a mass is supported by a spring-damper-and pneumatically actuated muscle. While the spring-mass damper is a passive system, the addition of pneumatic muscle makes the system active. The dynamic analysis of this system is carried out by developing the equation of motion which contains multi-frequency excitations with both forced and parametric excitations. Using method of multiple scales the reduced equations are developed for simple and principal parametric resonance conditions. The time response obtained using method of multiple scales have been compared with those obtained by solving the original equation of motion numerically. Using both time response and phase portraits, variation of few systems parameters have been carried out. This work may find application in developing wearable device and robotic device for rehabilitation purpose.


Sign in / Sign up

Export Citation Format

Share Document