METHOD OF MULTIPLE SCALES FOR VIBRATION ANALYSIS OF ROTOR SHAFT SYSTEMS WITH NON-LINEAR BEARING PEDESTAL MODEL

1998 ◽  
Vol 218 (2) ◽  
pp. 293-305 ◽  
Author(s):  
Z. Ji ◽  
J.W. Zu
Author(s):  
S. Rosenblat

AbstractA study is made of a non-linear diffusion equation which admits bifurcating solutions in the case where the bifurcation is asymmetric. An analysis of the initial-value problem is made using the method of multiple scales, and the bifurcation and stability characteristics are determined. It is shown that a suitable interpretation of the results can lead to determination of the choice of the bifurcating solution adopted by the system.


2012 ◽  
Vol 19 (4) ◽  
pp. 527-543 ◽  
Author(s):  
Li-Qun Chen ◽  
Hu Ding ◽  
C.W. Lim

Transverse non-linear vibration is investigated in principal parametric resonance of an axially accelerating viscoelastic beam. The axial speed is characterized as a simple harmonic variation about a constant mean speed. The material time derivative is used in the viscoelastic constitutive relation. The transverse motion can be governed by a non-linear partial-differential equation or a non-linear integro-partial-differential equation. The method of multiple scales is applied to the governing equations to determine steady-state responses. It is confirmed that the mode uninvolved in the resonance has no effect on the steady-state response. The differential quadrature schemes are developed to verify results via the method of multiple scales. It is demonstrated that the straight equilibrium configuration becomes unstable and a stable steady-state emerges when the axial speed variation frequency is close to twice any linear natural frequency. The results derived for two governing equations are qualitatively the same, but quantitatively different. Numerical simulations are presented to examine the effects of the mean speed and the variation of the amplitude of the axial speed, the dynamic viscosity, the non-linear coefficients, and the boundary constraint stiffness on the instability interval and the steady-state response amplitude.


1971 ◽  
Vol 48 (3) ◽  
pp. 463-475 ◽  
Author(s):  
Ali Hasan Nayfeh ◽  
Sayed D. Hassan

The method of multiple scales is used to analyze three non-linear physical systems which support dispersive waves. These systems are (i) waves on the interface between a liquid layer and a subsonic gas flowing parallel to the undisturbed interface, (ii) waves on the surface of a circular jet of liquid, and (iii) waves in a hot electron plasma. It is found that the partial differential equations that govern the temporal and spatial variations of the wave-numbers, amplitudes, and phases have the same form for all of these systems. The results show that the non-linear motion affects only the phase. For the constant wave-number case, the general solution for the amplitude and the phase can be obtained.


Symmetry ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 85
Author(s):  
Yasser Salah Hamed ◽  
Ali Kandil

Time delay is an obstacle in the way of actively controlling non-linear vibrations. In this paper, a rotating blade’s non-linear oscillations are reduced via a time-delayed non-linear saturation controller (NSC). This controller is excited by a positive displacement signal measured from the sensors on the blade, and its output is the suitable control force applied onto the actuators on the blade driving it to the desired minimum vibratory level. Based on the saturation phenomenon, the blade vibrations can be saturated at a specific level while the rest of the energy is transferred to the controller. This can be done by adjusting the controller natural frequency to be one half of the blade natural frequency. The whole behavior is governed by a system of first-order differential equations gained by the method of multiple scales. Different responses are included to show the influences of time delay on the closed-loop control process. Also, a good agreement can be noticed between the analytical curves and the numerically simulated ones.


The method of multiple scales is used to examine the slow modulation of a harmonic wave moving over the surface of a two dimensional channel. The flow is assumed inviscid and incompressible, but the basic flow takes the form of an arbitrary shear. The appropriate nonlinear Schrödinger equation is derived with coefficients that depend, in a complicated way, on the shear. It is shown that this equation agrees with previous work for the case of no shear; it also agrees in the long wave limit with the appropriate short wave limit of the Korteweg-de Vries equation, the shear being arbitrary. Finally, it is remarked that the stability of Stokes waves over any shear can be examined by using the results derived here.


Sign in / Sign up

Export Citation Format

Share Document