Singularity formation in the one-dimensional supercooled Stefan problem

1996 ◽  
Vol 7 (2) ◽  
pp. 119-150 ◽  
Author(s):  
Miguel A. Herrero ◽  
Juan J. L. Velázquez

It is well-known that solutions to the one-dimensional supercooled Stefan problem (SSP) may exhibit blow-up in finite time. If we consider (SSP) in a half-line with zero flux conditions at t = 0, blow-up occurs if there exists T < ∞ such that limt↑Ts(t) > 0 and lim inft↑T⋅(t) = – ∞,s(t) being the interface of the problem under consideration. In this paper, we derive the asymptotics of solutions and interfaces near blow-up. We shall also use these results to discuss the possible continuation of solutions beyond blow-up.

1997 ◽  
Vol 8 (5) ◽  
pp. 525-532 ◽  
Author(s):  
ZHICHENG GUAN ◽  
XU-JIA WANG

In this paper we deal with the one-dimensional Stefan problemut−uxx =s˙(t)δ(x−s(t)) in ℝ ;× ℝ+, u(x, 0) =u0(x)with kinetic condition s˙(t)=f(u) on the free boundary F={(x, t), x=s(t)}, where δ(x) is the Dirac function. We proved in [1] that if [mid ]f(u)[mid ][les ]Meγ[mid ]u[mid ] for some M>0 and γ∈(0, 1/4), then there exists a global solution to the above problem; and the solution may blow up in finite time if f(u)[ges ] Ceγ1[mid ]u[mid ] for some γ1 large. In this paper we obtain the optimal exponent, which turns out to be √2πe. That is, the above problem has a global solution if [mid ]f(u)[mid ][les ]Meγ[mid ]u[mid ] for some γ∈(0, √2πe), and the solution may blow up in finite time if f(u)[ges ] Ce√2πe[mid ]u[mid ].


2018 ◽  
Vol 21 (4) ◽  
pp. 901-918 ◽  
Author(s):  
Sabrina Roscani ◽  
Domingo Tarzia

Abstract A one-dimensional fractional one-phase Stefan problem with a temperature boundary condition at the fixed face is considered by using the Riemann–Liouville derivative. This formulation is more convenient than the one given in Roscani and Santillan (Fract. Calc. Appl. Anal., 16, No 4 (2013), 802–815) and Tarzia and Ceretani (Fract. Calc. Appl. Anal., 20, No 2 (2017), 399–421), because it allows us to work with Green’s identities (which does not apply when Caputo derivatives are considered). As a main result, an integral relationship between the temperature and the free boundary is obtained which is equivalent to the fractional Stefan condition. Moreover, an exact solution of similarity type expressed in terms of Wright functions is also given.


2009 ◽  
Vol 20 (2) ◽  
pp. 187-214 ◽  
Author(s):  
WAN CHEN ◽  
MICHAEL J. WARD

The dynamics and oscillatory instabilities of multi-spike solutions to the one-dimensional Gray-Scott reaction–diffusion system on a finite domain are studied in a particular parameter regime. In this parameter regime, a formal singular perturbation method is used to derive a novel ODE–PDE Stefan problem, which determines the dynamics of a collection of spikes for a multi-spike pattern. This Stefan problem has moving Dirac source terms concentrated at the spike locations. For a certain subrange of the parameters, this Stefan problem is quasi-steady and an explicit set of differential-algebraic equations characterizing the spike dynamics is derived. By analysing a nonlocal eigenvalue problem, it is found that this multi-spike quasi-equilibrium solution can undergo a Hopf bifurcation leading to oscillations in the spike amplitudes on an O(1) time scale. In another subrange of the parameters, the spike motion is not quasi-steady and the full Stefan problem is solved numerically by using an appropriate discretization of the Dirac source terms. These numerical computations, together with a linearization of the Stefan problem, show that the spike layers can undergo a drift instability arising from a Hopf bifurcation. This instability leads to a time-dependent oscillatory behaviour in the spike locations.


2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Linrui Li ◽  
Shu Wang

In this paper, we study the finite-time singularity formation on the coupled Burgers–Constantin–Lax–Majda system with the nonlocal term, which is one nonlinear nonlocal system of combining Burgers equations with Constantin–Lax–Majda equations. We discuss whether the finite-time blow-up singularity mechanism of the system depends upon the domination between the CLM type’s vortex-stretching term and the Burgers type’s convection term in some sense. We give two kinds of different finite-time blow-up results and prove the local smooth solution of the nonlocal system blows up in finite time for two classes of large initial data.


2003 ◽  
Vol 2003 (17) ◽  
pp. 995-1003 ◽  
Author(s):  
Marius Ghergu ◽  
Vicentiu Radulescu

We consider the one-dimensional logistic problem(rαA(|u′|)u′)′=rαp(r)f(u)on(0,∞),u(0)>0,u′(0)=0, whereαis a positive constant andAis a continuous function such that the mappingtA(|t|)is increasing on(0,∞). The framework includes the case wherefandpare continuous and positive on(0,∞),f(0)=0, andfis nondecreasing. Our first purpose is to establish a general nonexistence result for this problem. Then we consider the case of solutions that blow up at infinity and we prove several existence and nonexistence results depending on the growth ofpandA. As a consequence, we deduce that the mean curvature inequality problem on the whole space does not have nonnegative solutions, excepting the trivial one.


2013 ◽  
Vol 23 (08) ◽  
pp. 1377-1419 ◽  
Author(s):  
MORIMICHI UMEHARA ◽  
ATUSI TANI

In this paper we consider a system of equations describing the one-dimensional motion of a viscous and heat-conductive gas bounded by the free-surface. The motion is driven by the self-gravitation of the gas. This system of equations, originally formulated in the Eulerian coordinate, is reduced to the one in a fixed domain by the Lagrangian-mass transformation. For smooth initial data we first establish the temporally global solvability of the problem based on both the fundamental result for local in time and unique existence of the classical solution and a priori estimates of its solution. Second it is proved that some estimates of the global solution are independent of time under a certain restricted, but physically plausible situation. This gives the fact that the solution does not blow up even if time goes to infinity under such a situation. Simultaneously, a temporally asymptotic behavior of the solution is established.


Sign in / Sign up

Export Citation Format

Share Document