scholarly journals Practical type inference for arbitrary-rank types

2007 ◽  
Vol 17 (1) ◽  
pp. 1-82 ◽  
Author(s):  
SIMON PEYTON JONES ◽  
DIMITRIOS VYTINIOTIS ◽  
STEPHANIE WEIRICH ◽  
MARK SHIELDS

AbstractHaskell's popularity has driven the need for ever more expressive type system features, most of which threaten the decidability and practicality of Damas-Milner type inference. One such feature is the ability to write functions with higher-rank types – that is, functions that take polymorphic functions as their arguments. Complete type inference is known to be undecidable for higher-rank (impredicative) type systems, but in practice programmers are more than willing to add type annotations to guide the type inference engine, and to document their code. However, the choice of just what annotations are required, and what changes are required in the type system and its inference algorithm, has been an ongoing topic of research. We take as our starting point a λ-calculus proposed by Odersky and Läufer. Their system supports arbitrary-rank polymorphism through the exploitation of type annotations on λ-bound arguments and arbitrary sub-terms. Though elegant, and more convenient than some other proposals, Odersky and Läufer's system requires many annotations. We show how to use local type inference (invented by Pierce and Turner) to greatly reduce the annotation burden, to the point where higher-rank types become eminently usable. Higher-rank types have a very modest impact on type inference. We substantiate this claim in a very concrete way, by presenting a complete type-inference engine, written in Haskell, for a traditional Damas-Milner type system, and then showing how to extend it for higher-rank types. We write the type-inference engine using a monadic framework: it turns out to be a particularly compelling example of monads in action. The paper is long, but is strongly tutorial in style. Although we use Haskell as our example source language, and our implementation language, much of our work is directly applicable to any ML-like functional language.

1995 ◽  
Vol 5 (1) ◽  
pp. 1-35 ◽  
Author(s):  
Mark P. Jones

AbstractThis paper describes a flexible type system that combines overloading and higher-order polymorphism in an implicitly typed language using a system of constructor classes—a natural generalization of type classes in Haskell. We present a range of examples to demonstrate the usefulness of such a system. In particular, we show how constructor classes can be used to support the use of monads in a functional language. The underlying type system permits higher-order polymorphism but retains many of the attractive features that have made Hindley/Milner type systems so popular. In particular, there is an effective algorithm that can be used to calculate principal types without the need for explicit type or kind annotations. A prototype implementation has been developed providing, amongst other things, the first concrete implementation of monad comprehensions known to us at the time of writing.


2021 ◽  
Vol 54 (5) ◽  
pp. 1-38
Author(s):  
Jana Dunfield ◽  
Neel Krishnaswami

Bidirectional typing combines two modes of typing: type checking, which checks that a program satisfies a known type, and type synthesis, which determines a type from the program. Using checking enables bidirectional typing to support features for which inference is undecidable; using synthesis enables bidirectional typing to avoid the large annotation burden of explicitly typed languages. In addition, bidirectional typing improves error locality. We highlight the design principles that underlie bidirectional type systems, survey the development of bidirectional typing from the prehistoric period before Pierce and Turner’s local type inference to the present day, and provide guidance for future investigations.


2014 ◽  
Vol 24 (1) ◽  
pp. 56-112 ◽  
Author(s):  
YAN CHEN ◽  
JOSHUA DUNFIELD ◽  
MATTHEW A. HAMMER ◽  
UMUT A. ACAR

AbstractComputational problems that involve dynamic data, such as physics simulations and program development environments, have been an important subject of study in programming languages. Building on this work, recent advances in self-adjusting computation have developed techniques that enable programs to respond automatically and efficiently to dynamic changes in their inputs. Self-adjusting programs have been shown to be efficient for a reasonably broad range of problems, but the approach still requires an explicit programming style, where the programmer must use specific monadic types and primitives to identify, create, and operate on data that can change over time. We describe techniques for automatically translating purely functional programs into self-adjusting programs. In this implicit approach, the programmer need only annotate the (top-level) input types of the programs to be translated. Type inference finds all other types, and a type-directed translation rewrites the source program into an explicitly self-adjusting target program. The type system is related to information-flow type systems and enjoys decidable type inference via constraint solving. We prove that the translation outputs well- typed self-adjusting programs and preserves the source program's input–output behavior, guaranteeing that translated programs respond correctly to all changes to their data. Using a cost semantics, we also prove that the translation preserves the asymptotic complexity of the source program.


1996 ◽  
Vol 6 (1) ◽  
pp. 111-141 ◽  
Author(s):  
John Greiner

AbstractThe weak polymorphic type system of Standard ML of New Jersey (SML/NJ) (MacQueen, 1992) has only been presented as part of the implementation of the SML/NJ compiler, not as a formal type system. As a result, it is not well understood. And while numerous versions of the implementation have been shown unsound, the concept has not been proved sound or unsound. We present an explanation of weak polymorphism and show that a formalization of this is sound. We also relate this to the SML/NJ implementation of weak polymorphism through a series of type systems that incorporate elements of the SML/NJ type inference algorithm.


1993 ◽  
Vol 3 (4) ◽  
pp. 465-484 ◽  
Author(s):  
Robert Harper ◽  
Bruce F. Duba ◽  
David Macqueen

AbstractAn extension of ML with continuation primitives similar to those found in Scheme is considered. A number of alternative type systems are discussed, and several programming examples are given. A continuation-based operational semantics is defined for a small, purely functional language, and the soundness of the Damas–Milner polymorphic type assignment system with respect to this semantics is proved. The full Damas–Milner type system is shown to be unsound in the presence of first-class continuations. Restrictions on polymorphism similar to those introduced in connection with reference types are shown to suffice for soundness.


2021 ◽  
Vol 5 (OOPSLA) ◽  
pp. 1-28
Author(s):  
Magnus Madsen ◽  
Jaco van de Pol

We present a simple, practical, and expressive relational nullable type system. A relational nullable type system captures whether an expression may evaluate to null based on its type, but also based on the type of other related expressions. The type system extends the Hindley-Milner type system with Boolean constraints, supports parametric polymorphism, and preserves principal types modulo Boolean equivalence. We show how to support full Hindley-Milner style type inference with an extension of Algorithm W. We conduct a preliminary study of open source projects showing that there is a need for relational nullable type systems across a wide range of programming languages. The most important findings from the study are: (i) programmers use programming patterns where the nullability of one expression depends on the nullability of other related expressions, (ii) such invariants are commonly enforced with run-time exceptions, and (iii) reasoning about these programming patterns requires not only knowledge of when an expression may evaluate to null, but also when it may evaluate to a non-null value. We incorporate these observations in the design of the proposed relational nullable type system.


2019 ◽  
Vol 9 (1) ◽  
pp. 52-79
Author(s):  
Lorenzo Bettini

AbstractProviding IDE support for a programming language or a DSL (Domain Specific Language) helps the users of the language to be more productive and to have an immediate feedback on possible errors in a program. Static types can drive IDE mechanisms such as the content assist to propose sensible completions in a given program context. Types can also be used to enrich other typical IDE parts such as the Outline and theHovering pop-ups. In this paper, we focus on statically typed imperative languages, adopting some form of type inference. We present a few general patterns for implementing efficient type systems, focusing on type error recovery. This way, the type system is able to type as many parts of the program as possible, keeping a good IDE experience. Type error messages will be placed on the important parts of the program, avoiding cascading errors that can confuse the user. We show two case studies:we apply the presented patterns to implement the type system of two statically typed DSLs, a simple expression language and a reduced Java-like language, with OOP features. We use Xtext as the language workbench for implementing the compiler and the IDE support andXsemantics, a DSL for implementing type systems using a syntax that mimics formal systems. The patterns shown in the paper can be reused also for implementing languages with other language frameworks.


2011 ◽  
Vol 21 (4-5) ◽  
pp. 333-412 ◽  
Author(s):  
DIMITRIOS VYTINIOTIS ◽  
SIMON PEYTON JONES ◽  
TOM SCHRIJVERS ◽  
MARTIN SULZMANN

AbstractAdvanced type system features, such as GADTs, type classes and type families, have proven to be invaluable language extensions for ensuring data invariants and program correctness. Unfortunately, they pose a tough problem for type inference when they are used as local type assumptions. Local type assumptions often result in the lack of principal types and cast the generalisation of local let-bindings prohibitively difficult to implement and specify. User-declared axioms only make this situation worse. In this paper, we explain the problems and – perhaps controversially – argue for abandoning local let-binding generalisation. We give empirical results that local let generalisation is only sporadically used by Haskell programmers. Moving on, we present a novel constraint-based type inference approach for local type assumptions. Our system, called OutsideIn(X), is parameterised over the particular underlying constraint domain X, in the same way as HM(X). This stratification allows us to use a common metatheory and inference algorithm. OutsideIn(X) extends the constraints of X by introducing implication constraints on top. We describe the strategy for solving these implication constraints, which, in turn, relies on a constraint solver for X. We characterise the properties of the constraint solver for X so that the resulting algorithm only accepts programs with principal types, even when the type system specification accepts programs that do not enjoy principal types. Going beyond the general framework, we give a particular constraint solver for X = type classes + GADTs + type families, a non-trivial challenge in its own right. This constraint solver has been implemented and distributed as part of GHC 7.


Author(s):  
Bhargav Shivkumar ◽  
Enrique Naudon ◽  
Lukasz Ziarek

AbstractIn this paper, we describe our experience incorporating gradual types in a statically typed functional language with Hindley-Milner style type inference. Where most gradually typed systems aim to improve static checking in a dynamically typed language, we approach it from the opposite perspective and promote dynamic checking in a statically typed language. Our approach provides a glimpse into how languages like SML and OCaml might handle gradual typing. We discuss our implementation and challenges faced—specifically how gradual typing rules apply to our representation of composite and recursive types. We review the various implementations that add dynamic typing to a statically typed language in order to highlight the different ways of mixing static and dynamic typing and examine possible inspirations while maintaining the gradual nature of our type system. This paper also discusses our motivation for adding gradual types to our language, and the practical benefits of doing so in our industrial setting.


Sign in / Sign up

Export Citation Format

Share Document