Implements from the Glacial Deposits of North Norfolk

1920 ◽  
Vol 3 (2) ◽  
pp. 200-205
Author(s):  
J. Cox

I discovered my first flint implement, a very fine Neolithic axe, in Gresham, in the year 1883, and this find led me to investigate the neighbourhood for other specimens. I was successful in finding many Neolithic implements of various kinds, which have from time to time been exhibited at the meetings of the Prehistoric Society of East Anglia.Shortly after my first finds, I commenced searching the gravels in the parish for “river drift” implements, but with very little success, as I soon found out that the gravel was of glacial origin, and the sandy surface of most of the district around was also glacial.The high ground to the north of Gresham consists of what is now fairly well known as the “Cromer-Holt ridge,” and is considered by Mr. F. W. Harmer, F.G.S., to be the terminal moraine of the North Sea ice sheet, built up while the glacier remained stationary for a long period, on its northward retreat. The numerous small valleys were formed by waters from the melting ice while the glacier was in its stationary stage, and may also have been influenced by the later glacier which deposited the chalky boulder clay.

Nature ◽  
1894 ◽  
Vol 50 (1282) ◽  
pp. 79-79
Author(s):  
HENRY H. HOWORTH
Keyword(s):  
Sea Ice ◽  

Author(s):  
Colin K. BALLANTYNE ◽  
David SMALL

ABSTRACTThe last Scottish Ice Sheet (SIS) expanded from a pre-existing ice cap after ∼35 ka. Highland ice dominated, with subsequent build-up of a Southern Uplands ice mass. The Outer Hebrides, Skye, Mull, the Cairngorms and Shetland supported persistent independent ice centres. Expansion was accompanied by ice-divide migration and switching flow directions. Ice nourished in Scotland reached the Atlantic Shelf break in some sectors but only mid-shelf in others, was confluent with the Fennoscandian Ice Sheet (FIS) in the North Sea Basin, extended into northern England, and fed the Irish Sea Ice Stream and a lobe that reached East Anglia. The timing of maximum extent was diachronous, from ∼30–27 ka on the Atlantic Shelf to ∼22–21 ka in Yorkshire. The SIS buried all mountains, but experienced periods of thickening alternating with drawdown driven by ice streams such as the Minch, the Hebrides and the Moray Firth Ice Streams. Submarine moraine banks indicate oscillating retreat and progressive decoupling of Highland ice from Orkney–Shetland ice. The pattern and timing of separation of the SIS and FIS in the North Sea Basin remain uncertain. Available evidence suggests that by ∼17 ka, much of the Sea of the Hebrides, the Outer Hebrides, Caithness and the coasts of E Scotland were deglaciated. By ∼16 ka, the Solway lowlands, Orkney and Shetland were deglaciated, the SIS and Irish Ice Sheet had separated, the ice margin lay along the western seaboard, nunataks had emerged in Wester Ross, the ice margin lay N of the Cairngorms and the sea had invaded the Tay and Forth estuaries. By ∼15 ka, most of the Southern Uplands, the Firth of Clyde, the Midland Valley and the upper Spey valley were deglaciated, and in NW Scotland ice was retreating from fjords and valleys. By the onset of rapid warming at ∼14.7 ka, much of the remnant SIS was confined within the limits of Younger Dryas glaciation. The SIS, therefore, lost most of its mass during the Dimlington Stade. It is uncertain whether fragments of the SIS persisted on high ground throughout the Lateglacial Interstade.


1937 ◽  
Vol 3 (1-2) ◽  
pp. 136-157 ◽  
Author(s):  
Friedrich E. Zeuner

For many years, Professor P. G. H. Boswell has studied the Pleistocene deposits of East Anglia and, from time to time, published most illuminating reviews summarising the progress of work and discussing the possible relations to the corresponding deposits of other districts (especially 1931, 1932, 1936). In his Presidential Address to the Prehistoric Society last year, he paid particular attention to a problem which has often been attacked but not yet solved satisfactorily, namely the correlation of East Anglia with the Continent; and he suggested, as a possible way out of the difficulties, the correlation of the Hunstanton Boulder Clay with Würm 2, the Upper Chalky Drift with Würm 1, the Great Chalky Boulder Clay with Riss, the North Sea Drift with Mindel, and the later Crag deposits containing a cold fauna, with Günz. He admitted, however, that such a correlation would ‘bring other difficulties in its train.’


1916 ◽  
Vol 3 (1) ◽  
pp. 26-29
Author(s):  
Percy Fry Kendall

In 1902 I published a paper, the outcome of several years' observation, on certain phenomena associated with the glacial deposits of the Cleveland area, which I attributed to the former presence of a series of temporary lakes and lakelets upheld in the recesses of the hills by the margin of a great ice-sheet occupying the greater part of the North Sea. This interpretation met with so wide an acceptance, even by those geologists familiar with the district who had previously attributed the glacial deposits to a marine origin, that during the succeeding thirteen years I have steadfastly refrained from replying to criticism, hoping by this abstention to keep the issues unclouded by a controversy that might at any stage develop an acerbity not always lacking in earlier discussions.


1866 ◽  
Vol 3 (26) ◽  
pp. 348-354 ◽  
Author(s):  
Searles V. Wood

In a paper in this Magazine, upon the structure of the Thames Valley, I endeavoured to show that instead of being, as had been asserted, a valley of similar structure to those of the Somme and Seine, and containing deposits of nearly similar order and age, the valley in which the Thames gravel was deposited possessed no outlet to what is now the North Sea, being divided from it by a range of high gravelless country; and that, in lieu of such an outlet, the valley opened, in more than one part, over what is now the bare Chalk country forming the northern boundary of the Valley of the Weald. I also endeavoured to show that all the deposits of the Thames Valley, except the peat and marsh clay, belonged to several successive stages, marking the gradual denudation of the Boulderclay, the lower Bagshot, the London Clay, and the subjacent Tertiaries, which had, at the end of the Glacial period, spread over the south-east of England in a complete order of succession: the sea into which this valley discharged occupying, what is now, the Chalk country of the Counties of Kent, Surrey, Sussex, and Hampshire, inclusive of the interval subsequently scooped out to form the Valley of the Weald: so that, not only was the latter valley newer than that of the Thames, and of the most recent of the Thames Valley deposits, except the peat and marsh clay, but that these deposits in themselves marked a long descent in time from that comparatively remote period of the Boulder-clay.


2005 ◽  
Vol 8 ◽  
pp. 1-192 ◽  
Author(s):  
Stig A. Schack Pedersen

Pedersen, S.A.S. 2005: Structural analysis of the Rubjerg Knude Glaciotectonic Complex, Vendsyssel, northern Denmark. Geological Survey of Denmark and Greenland Bulletin 8, 192 pp. The Rubjerg Knude Glaciotectonic Complex is a thin-skinned thrust-fault complex that was formed during the advance of the Scandinavian Ice Sheet (30 000 – 26 000 B.P.); it is well exposed in a 6 km long coastal profile bordering the North Sea in northern Denmark. The glaciotectonic thrust-fault deformation revealed by this cliff section has been subjected to detailed structural analysis based on photogrammetric measurement and construction of a balanced cross-section. Thirteen sections are differentiated, characterising the distal to proximal structural development of the complex. The deformation affected three stratigraphic units: the Middle Weichselian arctic marine Stortorn Formation, the mainly glaciolacustrine Lønstrup Klint Formation and the dominantly fluvial Rubjerg Knude Formation; these three formations are formally defined herein, together with the Skærumhede Group which includes the Stortorn and Lønstrup Klint Formations. The Rubjerg Knude Formation was deposited on a regional unconformity that caps the Lønstrup Klint Formation and separates pre-tectonic deposits below from syntectonic deposits above. In the distal part of the complex, the thrust-fault architecture is characterised by thin flatlying thrust sheets displaced over the footwall flat of the foreland for a distance of more than 500 m. Towards the proximal part of the complex, the dip of the thrust faults increases, and over long stretches they are over-steepened to an upright position. The lowest décollement zone is about 40 m below sea level in the proximal part of the system, and shows a systematic step-wise change to higher levels in a distal (southwards) direction. The structural elements are ramps and flats related to hanging-wall and footwall positions. Above upper ramp-hinges, hanging-wall anticlines developed; footwall synclines are typically related to growth-fault sedimentation in syntectonic piggyback basins, represented by the Rubjerg Knude Formation. Blocks and slump-sheets constituting parts of the Lønstrup Klint Formation were derived from the tips of up-thrusted thrust sheets and slumped into the basins. Mud diapirs are a prominent element in the thrust-fault complex, resulting from mud mobilisation mainly at hanging-wall flats and ramps. Shortening during thrust-fault deformation has been calculated as 50%. Only about 11% of the initial stratigraphic units subjected to thrust faulting has been lost due to erosion. The thrust-fault deformation was caused by gravity spreading of an advancing ice sheet. Overpressured mud-fluid played an important role in stress transmission. The average velocity of thrust-fault displacement is estimated at 2 m per year, which led to compression of a 12 km stretch of flat-lying sediments, c. 40 m in thickness, into a thrust-fault complex 6 km in length. The thrust-fault complex is truncated by a glaciotectonic unconformity, formed when the advancing ice sheet finally overrode the complex. When this ice sheet melted away, a hilland- hole pair was formed, and meltwater deposits derived from a new ice-advance (NE-Ice) filled the depression. The NE-Ice overran the complex during its advance to the main stationary line situated in the North Sea. When this ice in turn melted away (c. 19 000 – 15 000 B.P.), the glacial landscape was draped by arctic marine deposits of the Vendsyssel Formation (new formation defined herein).


2007 ◽  
Vol 51 (3) ◽  
pp. 337-346 ◽  
Author(s):  
D. R. Bridgland ◽  
P. L. Gibbard

ABSTRACT The principal river of the London basin, the Thames, has experienced a number of course changes during the Quaternary. Some, at least, of these are known to result directly from glaciation. In the early Quaternary the river flowed to the north of London across East Anglia to the north coast of Norfolk. By the early Middle Pleistocene it had changed its course to flow eastwards near the Suffolk - Essex border into the southern North Sea. The Thames valley to the north of London was blocked by ice during the Anglian/Elsterian glaciation, causing a series of glacial lakes to form. Overflow of these lakes brought the river into its modern valley through London. It is thought that this valley already existed by the Anglian in the form of a tributary of the north-flowing River Medway, which joined the old Thames valley near Clacton. Also during the Anglian/Elsterian glaciation. British and continental ice masses are thought to have joined in the northern part of the North Sea basin, causing a large lake to form between the east coast of England and the Netherlands. It is widely believed that the overflow from this lake caused the first breach in the Weald-Artois Ridge, bringing about the formation of the Strait of Dover. Prior to the glaciation the Thames, in common with rivers from the continent (including the Rhine and Meuse), flowed into the North Sea Basin. It seems that, after the lake overflow, these rivers together drained southwards into the English Channel. Whether this southern drainage route was adopted during all later periods of low sea level remains to be determined, but it seems certain that this was the case during the last glacial.


1919 ◽  
Vol 6 (6) ◽  
pp. 273-274 ◽  
Author(s):  
W. I. Saxton ◽  
A. T. Hopwood

The general behaviour of the Scandinavian ice-sheet which spread over the North Sea at the climax of the Glacial period is fairly well known. Numerous erratics show that it reached the coast of Yorkshire and the eastern counties of England. Farther north no erratics have been found, but Dr. Jamieson and others have shown that it approached the coast of Aberdeen. Dr. Croll and Drs. Peach and Horne have shown that it forced the Scotch ice flowing eastward from the Moray Firth to turn in a northerly and north-westerly direction across the northern part of Caithness and over the Orkneys. They concluded that ice from the Christiania district must have passed a few miles to the north of the Orkneys. This is well shown in the chart attached to their paper and also in Professor James Geikie's map. The occurrence of a few Scandinavian erratics in the Orkneys would confirm these deductions. The only erratic recorded from Orkney which may be of Scandinavian origin is the Saville boulder described by Professor Heddle, Drs. Peach and Horne, and Dr. J. S. Flett.


Sign in / Sign up

Export Citation Format

Share Document