scholarly journals A new description of orthogonal bases

2012 ◽  
Vol 23 (3) ◽  
pp. 555-567 ◽  
Author(s):  
BOB COECKE ◽  
DUSKO PAVLOVIC ◽  
JAMIE VICARY

We show that an orthogonal basis for a finite-dimensional Hilbert space can be equivalently characterised as a commutative †-Frobenius monoid in the category FdHilb, which has finite-dimensional Hilbert spaces as objects and continuous linear maps as morphisms, and tensor product for the monoidal structure. The basis is normalised exactly when the corresponding commutative †-Frobenius monoid is special. Hence, both orthogonal and orthonormal bases are characterised without mentioning vectors, but just in terms of the categorical structure: composition of operations, tensor product and the †-functor. Moreover, this characterisation can be interpreted operationally, since the †-Frobenius structure allows the cloning and deletion of basis vectors. That is, we capture the basis vectors by relying on their ability to be cloned and deleted. Since this ability distinguishes classical data from quantum data, our result has important implications for categorical quantum mechanics.

2019 ◽  
Vol 7 ◽  
Author(s):  
WILLIAM SLOFSTRA

We construct a linear system nonlocal game which can be played perfectly using a limit of finite-dimensional quantum strategies, but which cannot be played perfectly on any finite-dimensional Hilbert space, or even with any tensor-product strategy. In particular, this shows that the set of (tensor-product) quantum correlations is not closed. The constructed nonlocal game provides another counterexample to the ‘middle’ Tsirelson problem, with a shorter proof than our previous paper (though at the loss of the universal embedding theorem). We also show that it is undecidable to determine if a linear system game can be played perfectly with a finite-dimensional strategy, or a limit of finite-dimensional quantum strategies.


2006 ◽  
Vol 04 (02) ◽  
pp. 325-330 ◽  
Author(s):  
B. V. RAJARAMA BHAT

Consider a tensor product [Formula: see text] of finite-dimensional Hilbert spaces with dimension [Formula: see text], 1 ≤ i ≤ k. Then the maximum dimension possible for a subspace of [Formula: see text] with no non-zero product vector is known to be d1 d2…dk - (d1 + d2 + … + dk + k - 1. We obtain an explicit example of a subspace of this kind. We determine the set of product vectors in its orthogonal complement and show that it has the minimum dimension possible for an unextendible product basis of not necessarily orthogonal product vectors.


1984 ◽  
Vol 39 (2) ◽  
pp. 113-131
Author(s):  
Fritz Bopp

The question is often asked how to interprete quantum physics. That question does not arise in classical physics, since Newton's axioms are immediately connected with basic ideas and experiences. The same is possible in quantum physics, if we remember how elementary particle physicists describe their experiments. As Helmholtz has pointed out. the basic assumption of classical physics is that of geneidentity. That means: Bodies remain the same during their motion. Obviously, that is no longer true in quantum physics. Particles can be created and annihilated. Therefore creation and annihilation must be considered as basic processes. Motion only occurs, if a particle is annihilated in a certain point, if an equal one is created in an infinitesimally neighbouring point, and if this process is continuously going on during a certain time. Motions of that kind are compatible with the existence of some manifest creation and annihilation processes. If we accept this idea, quantum physics can be derived from first principles. As in classical physics, we know therefore what happens from the very beginning. Thus questions of interpretation become dispensable. A particular mathematical method is used to exhaust continua. The theory is formulated in a finite lattice, whose point density and extension equally go to infinity. All calculations are therefore performed in a finite dimensional Hilbert space. The results are however related to an infinite dimensional one. Earlier calculations may, therefore, be essentially correct, though they must be rejected in theories which are based on manifestly infinite dimensional Hilbert spaces. Here limiting processes do not occur in the state space. They are only admissible for numerical results.


2021 ◽  
Vol Volume 17, Issue 4 ◽  
Author(s):  
Robin Cockett ◽  
Cole Comfort ◽  
Priyaa Srinivasan

Categorical quantum mechanics exploits the dagger compact closed structure of finite dimensional Hilbert spaces, and uses the graphical calculus of string diagrams to facilitate reasoning about finite dimensional processes. A significant portion of quantum physics, however, involves reasoning about infinite dimensional processes, and it is well-known that the category of all Hilbert spaces is not compact closed. Thus, a limitation of using dagger compact closed categories is that one cannot directly accommodate reasoning about infinite dimensional processes. A natural categorical generalization of compact closed categories, in which infinite dimensional spaces can be modelled, is *-autonomous categories and, more generally, linearly distributive categories. This article starts the development of this direction of generalizing categorical quantum mechanics. An important first step is to establish the behaviour of the dagger in these more general settings. Thus, these notes simultaneously develop the categorical semantics of multiplicative dagger linear logic. The notes end with the definition of a mixed unitary category. It is this structure which is subsequently used to extend the key features of categorical quantum mechanics.


1978 ◽  
Vol 21 (1) ◽  
pp. 17-19
Author(s):  
Dragomir Ž. Djoković

Let G be a group and ρ and σ two irreducible unitary representations of G in complex Hilbert spaces and assume that dimp ρ= n < ∞. D. Poguntke [2] proved that is a sum of at most n2 irreducible subrepresentations. The case when dim a is also finite he attributed to R. Howe.We shall prove analogous results for arbitrary finite-dimensional representations, not necessarily unitary. Thus let F be an algebraically closed field of characteristic 0. We shall use the language of modules and we postulate that allour modules are finite-dimensional as F-vector spaces. The field F itself will be considered as a trivial G-module.


2018 ◽  
Vol 49 (1) ◽  
pp. 35-48
Author(s):  
Mohammad Janfada ◽  
Vahid Reza Morshedi ◽  
Rajabali Kamyabi Gol

In this paper, we study frames for operators ($K$-frames) in finite dimensional Hilbert spaces and express the dual of $K$-frames. Some properties of $K$-dual frames are investigated. Furthermore, the notion of their oblique $K$-dual and some properties are presented.


Author(s):  
Steve Zelditch

We consider a sequence of finite-dimensional Hilbert spaces of dimensions . Motivating examples are eigenspaces, or spaces of quasi-modes, for a Laplace or Schrödinger operator on a compact Riemannian manifold. The set of Hermitian orthonormal bases of may be identified with U ( d N ), and a random orthonormal basis of is a choice of a random sequence U N ∈ U ( d N ) from the product of normalized Haar measures. We prove that if and if tends to a unique limit state ω ( A ), then almost surely an orthonormal basis is quantum ergodic with limit state ω ( A ). This generalizes an earlier result of the author in the case where is the space of spherical harmonics on S 2 . In particular, it holds on the flat torus if d ≥5 and shows that a highly localized orthonormal basis can be synthesized from quantum ergodic ones and vice versa in relatively small dimensions.


2014 ◽  
Vol 25 (05) ◽  
pp. 1450037 ◽  
Author(s):  
Gabriella Böhm

This is a sequel paper of [Weak multiplier bialgebras, Trans. Amer. Math. Soc., in press] in which we study the comodules over a regular weak multiplier bialgebra over a field, with a full comultiplication. Replacing the usual notion of coassociative coaction over a (weak) bialgebra, a comodule is defined via a pair of compatible linear maps. Both the total algebra and the base (co)algebra of a regular weak multiplier bialgebra with a full comultiplication are shown to carry comodule structures. Kahng and Van Daele's integrals [The Larson–Sweedler theorem for weak multiplier Hopf algebras, in preparation] are interpreted as comodule maps from the total to the base algebra. Generalizing the counitality of a comodule to the multiplier setting, we consider the particular class of so-called full comodules. They are shown to carry bi(co)module structures over the base (co)algebra and constitute a monoidal category via the (co)module tensor product over the base (co)algebra. If a regular weak multiplier bialgebra with a full comultiplication possesses an antipode, then finite-dimensional full comodules are shown to possess duals in the monoidal category of full comodules. Hopf modules are introduced over regular weak multiplier bialgebras with a full comultiplication. Whenever there is an antipode, the Fundamental Theorem of Hopf Modules is proven. It asserts that the category of Hopf modules is equivalent to the category of firm modules over the base algebra.


2013 ◽  
Vol 2013 ◽  
pp. 1-14
Author(s):  
M. De la Sen

This paper investigates a class of self-adjoint compact operators in Hilbert spaces related to their truncated versions with finite-dimensional ranges. The comparisons are established in terms of worst-case norm errors of the composite operators generated from iterated computations. Some boundedness properties of the worst-case norms of the errors in their respective fixed points in which they exist are also given. The iterated sequences are expanded in separable Hilbert spaces through the use of numerable orthonormal bases.


Sign in / Sign up

Export Citation Format

Share Document