scholarly journals Quantum ergodicity of random orthonormal bases of spaces of high dimension

Author(s):  
Steve Zelditch

We consider a sequence of finite-dimensional Hilbert spaces of dimensions . Motivating examples are eigenspaces, or spaces of quasi-modes, for a Laplace or Schrödinger operator on a compact Riemannian manifold. The set of Hermitian orthonormal bases of may be identified with U ( d N ), and a random orthonormal basis of is a choice of a random sequence U N ∈ U ( d N ) from the product of normalized Haar measures. We prove that if and if tends to a unique limit state ω ( A ), then almost surely an orthonormal basis is quantum ergodic with limit state ω ( A ). This generalizes an earlier result of the author in the case where is the space of spherical harmonics on S 2 . In particular, it holds on the flat torus if d ≥5 and shows that a highly localized orthonormal basis can be synthesized from quantum ergodic ones and vice versa in relatively small dimensions.

2013 ◽  
Vol 2013 ◽  
pp. 1-14
Author(s):  
M. De la Sen

This paper investigates a class of self-adjoint compact operators in Hilbert spaces related to their truncated versions with finite-dimensional ranges. The comparisons are established in terms of worst-case norm errors of the composite operators generated from iterated computations. Some boundedness properties of the worst-case norms of the errors in their respective fixed points in which they exist are also given. The iterated sequences are expanded in separable Hilbert spaces through the use of numerable orthonormal bases.


2012 ◽  
Vol 23 (3) ◽  
pp. 555-567 ◽  
Author(s):  
BOB COECKE ◽  
DUSKO PAVLOVIC ◽  
JAMIE VICARY

We show that an orthogonal basis for a finite-dimensional Hilbert space can be equivalently characterised as a commutative †-Frobenius monoid in the category FdHilb, which has finite-dimensional Hilbert spaces as objects and continuous linear maps as morphisms, and tensor product for the monoidal structure. The basis is normalised exactly when the corresponding commutative †-Frobenius monoid is special. Hence, both orthogonal and orthonormal bases are characterised without mentioning vectors, but just in terms of the categorical structure: composition of operations, tensor product and the †-functor. Moreover, this characterisation can be interpreted operationally, since the †-Frobenius structure allows the cloning and deletion of basis vectors. That is, we capture the basis vectors by relying on their ability to be cloned and deleted. Since this ability distinguishes classical data from quantum data, our result has important implications for categorical quantum mechanics.


Author(s):  
Hiroshi Toda ◽  
Zhong Zhang

We already proved the existence of an orthonormal basis of wavelets having an irrational dilation factor with an infinite number of wavelet shapes, and based on its theory, we proposed an orthonormal basis of wavelets with an arbitrary real dilation factor. In this paper, with the development of these fundamentals, we propose a new type of orthonormal basis of wavelets with customizable frequency bands. Its frequency bands can be freely designed with arbitrary bounds in the frequency domain. For example, we show two types of orthonormal bases of wavelets. One of them has an irrational dilation factor, and the other is designed based on the major scale in just intonation.


Author(s):  
Phillip Kaye ◽  
Raymond Laflamme ◽  
Michele Mosca

We assume the reader has a strong background in elementary linear algebra. In this section we familiarize the reader with the algebraic notation used in quantum mechanics, remind the reader of some basic facts about complex vector spaces, and introduce some notions that might not have been covered in an elementary linear algebra course. The linear algebra notation used in quantum computing will likely be familiar to the student of physics, but may be alien to a student of mathematics or computer science. It is the Dirac notation, which was invented by Paul Dirac and which is used often in quantum mechanics. In mathematics and physics textbooks, vectors are often distinguished from scalars by writing an arrow over the identifying symbol: e.g a⃗. Sometimes boldface is used for this purpose: e.g. a. In the Dirac notation, the symbol identifying a vector is written inside a ‘ket’, and looks like |a⟩. We denote the dual vector for a (defined later) with a ‘bra’, written as ⟨a|. Then inner products will be written as ‘bra-kets’ (e.g. ⟨a|b⟩). We now carefully review the definitions of the main algebraic objects of interest, using the Dirac notation. The vector spaces we consider will be over the complex numbers, and are finite-dimensional, which significantly simplifies the mathematics we need. Such vector spaces are members of a class of vector spaces called Hilbert spaces. Nothing substantial is gained at this point by defining rigorously what a Hilbert space is, but virtually all the quantum computing literature refers to a finite-dimensional complex vector space by the name ‘Hilbert space’, and so we will follow this convention. We will use H to denote such a space. Since H is finite-dimensional, we can choose a basis and alternatively represent vectors (kets) in this basis as finite column vectors, and represent operators with finite matrices. As you see in Section 3, the Hilbert spaces of interest for quantum computing will typically have dimension 2n, for some positive integer n. This is because, as with classical information, we will construct larger state spaces by concatenating a string of smaller systems, usually of size two.


1969 ◽  
Vol 21 ◽  
pp. 625-638 ◽  
Author(s):  
R. Keown ◽  
C. Conatser

Our aim in this paper is to generalize certain ideas and results of Bary (1) on biorthogonal systems in separable Hilbert spaces to their counterparts in separable lp-spaces, 1 < p.The main result of Bary is to characterize a natural generalization of the concept of orthonormal basis for a Hilbert space. That of this paper is to characterize the concept of a Bary basis which is a generalization of the idea of standard basis of an lp-space. The result is interesting for lp-spaces because of the paucity of standard bases in these spaces.Before summarizing our results, we shall introduce some notation and recall a few pertinent definitions and facts. The symbols and denote mutually conjugate lp-spaces, where is the space lt and the space lswith 1 < r <2 and 2 < s = r/(r – 1).


Mathematics ◽  
2020 ◽  
Vol 8 (11) ◽  
pp. 2066
Author(s):  
Messaoud Bounkhel ◽  
Mostafa Bachar

In the present work, we extend, to the setting of reflexive smooth Banach spaces, the class of primal lower nice functions, which was proposed, for the first time, in finite dimensional spaces in [Nonlinear Anal. 1991, 17, 385–398] and enlarged to Hilbert spaces in [Trans. Am. Math. Soc. 1995, 347, 1269–1294]. Our principal target is to extend some existing characterisations of this class to our Banach space setting and to study the relationship between this concept and the generalised V-prox-regularity of the epigraphs in the sense proposed recently by the authors in [J. Math. Anal. Appl. 2019, 475, 699–29].


2019 ◽  
Vol 7 (1) ◽  
pp. 67-77
Author(s):  
Shmuel Friedland

Abstract In this paper we give a simple sequence of necessary and sufficient finite dimensional conditions for a positive map between certain subspaces of bounded linear operators on separable Hilbert spaces to be completely positive. These criterions are natural generalization of Choi’s characterization for completely positive maps between pairs of linear operators on finite dimensional Hilbert spaces. We apply our conditions to a completely positive map between two trace class operators on separable Hilbert spaces. A completely positive map μ is called a quantum channel, if it is trace preserving, and μ is called a quantum subchannel if it decreases the trace of a positive operator.We give simple neccesary and sufficient condtions for μ to be a quantum subchannel.We show that μ is a quantum subchannel if and only if it hasHellwig-Kraus representation. The last result extends the classical results of Kraus and the recent result of Holevo for characterization of a quantum channel.


2015 ◽  
Vol 2015 ◽  
pp. 1-7
Author(s):  
Xunxiang Guo

Firstly, we study the representation ofg-frames in terms of linear combinations of simpler ones such asg-orthonormal bases,g-Riesz bases, and normalized tightg-frames. Then, we study the dual and pseudodual ofg-frames, which are critical components in reconstructions. In particular, we characterize the dualg-frames in a constructive way; that is, the formulae for dualg-frames are given. We also give someg-frame like representations for pseudodualg-frame pairs. The operator parameterizations ofg-frames and decompositions of bounded operators are the key tools to prove our main results.


Sign in / Sign up

Export Citation Format

Share Document