scholarly journals Constructive decidability of classical continuity

2014 ◽  
Vol 25 (7) ◽  
pp. 1578-1589
Author(s):  
MARTÍN ESCARDÓ

We show that the following instance of the principle of excluded middle holds: any function on the one-point compactification of the natural numbers with values on the natural numbers is either classically continuous or classically discontinuous. The proof does not require choice and can be understood in any of the usual varieties of constructive mathematics. Classical (dis)continuity is a weakening of the notion of (dis)continuity, where the existential quantifiers are replaced by negated universal quantifiers. We also show that the classical continuity of all functions is equivalent to the negation of the weak limited principle of omniscience. We use this to relate uniform continuity and searchability of the Cantor space.

2013 ◽  
Vol 78 (3) ◽  
pp. 764-784 ◽  
Author(s):  
Martín H. Escardó

AbstractWe show that there are plenty of infinite sets that satisfy the omniscience principle, in a minimalistic setting for constructive mathematics that is compatible with classical mathematics. A first example of an omniscient set is the one-point compactification of the natural numbers, also known as the generic convergent sequence. We relate this to Grilliot's and Ishihara's Tricks. We generalize this example to many infinite subsets of the Cantor space. These subsets turn out to be ordinals in a constructive sense, with respect to the lexicographic order, satisfying both a well-foundedness condition with respect to decidable subsets, and transfinite induction restricted to decidable predicates. The use of simple types allows us to reach any ordinal below εQ, and richer type systems allow us to get higher.


2004 ◽  
Vol 04 (01) ◽  
pp. 63-76 ◽  
Author(s):  
OLIVER JENKINSON

Given a non-empty finite subset A of the natural numbers, let EA denote the set of irrationals x∈[0,1] whose continued fraction digits lie in A. In general, EA is a Cantor set whose Hausdorff dimension dim (EA) is between 0 and 1. It is shown that the set [Formula: see text] intersects [0,1/2] densely. We then describe a method for accurately computing dimensions dim (EA), and employ it to investigate numerically the way in which [Formula: see text] intersects [1/2,1]. These computations tend to support the conjecture, first formulated independently by Hensley, and by Mauldin & Urbański, that [Formula: see text] is dense in [0,1]. In the important special case A={1,2}, we use our computational method to give an accurate approximation of dim (E{1,2}), improving on the one given in [18].


2021 ◽  
Vol 21 ◽  
pp. 273-294
Author(s):  
Gabriele Baratelli ◽  

The paper is divided into two parts. In the first one, I set forth a hypothesis to explain the failure of Husserl’s project presented in the Philosophie der Arithmetik based on the principle that the entire mathematical science is grounded in the concept of cardinal number. It is argued that Husserl’s analysis of the nature of the symbols used in the decadal system forces the rejection of this principle. In the second part, I take into account Husserl’s explanation of why, albeit independent of natural numbers, the system is nonetheless correct. It is shown that its justification involves, on the one hand, a new conception of symbols and symbolic thinking, and on the other, the recognition of the question of “the formal” and formalization as pivotal to understand “the mathematical” overall.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Fatemah Ayatollah Zadeh Shirazi ◽  
Meysam Miralaei ◽  
Fariba Zeinal Zadeh Farhadi

In the following text, we want to study the behavior of one point compactification operator in the chain Ξ := {Metrizable, Normal, T2, KC, SC, US, T1, TD, TUD, T0, Top} of subcategories of category of topological spaces, Top (where we denote the subcategory of Top, containing all topological spaces with property P , simply by P). Actually we want to know, for P∈Ξ and X∈P, the one point compactification of topological space X belongs to which elements of Ξ. Finally we find out that the chain {Metrizable, T2, KC, SC, US, T1, TD, TUD, T0, Top} is a forwarding chain with respect to one point compactification operator.


2020 ◽  
pp. 1-26
Author(s):  
Ricardo Estrada ◽  
Jasson Vindas ◽  
Yunyun Yang

We first construct a space [Formula: see text] whose elements are test functions defined in [Formula: see text] the one point compactification of [Formula: see text] that have a thick expansion at infinity of special logarithmic type, and its dual space [Formula: see text] the space of sl-thick distributions. We show that there is a canonical projection of [Formula: see text] onto [Formula: see text] We study several sl-thick distributions and consider operations in [Formula: see text] We define and study the Fourier transform of thick test functions of [Formula: see text] and thick tempered distributions of [Formula: see text] We construct isomorphisms [Formula: see text] [Formula: see text] that extend the Fourier transform of tempered distributions, namely, [Formula: see text] and [Formula: see text] where [Formula: see text] are the canonical projections of [Formula: see text] or [Formula: see text] onto [Formula: see text] We determine the Fourier transform of several finite part regularizations and of general thick delta functions.


2008 ◽  
Vol 73 (3) ◽  
pp. 933-939 ◽  
Author(s):  
Josef Berger

AbstractWe prove constructively that the weak König lemma and quantifier-free number–number choice imply that every pointwise continuous function from Cantor space into Baire space has a modulus of uniform continuity.


1977 ◽  
Vol 18 (2) ◽  
pp. 199-207 ◽  
Author(s):  
Bridget Bos Baird

All topological spaces here are assumed to be T2. The collection F(Y)of all homeomorphisms whose domains and ranges are closed subsets of a topological space Y is an inverse semigroup under the operation of composition. We are interested in the general problem of getting some information about the subsemigroups of F(Y) whenever Y is a compact metric space. Here, we specifically look at the problem of determining those spaces X with the property that F(X) is isomorphic to a subsemigroup of F(Y). The main result states that if X is any first countable space with an uncountable number of points, then the semigroup F(X) can be embedded into the semigroup F(Y) if and only if either X is compact and Y contains a copy of X, or X is noncompact and locally compact and Y contains a copy of the one-point compactification of X.


1988 ◽  
Vol 40 (6) ◽  
pp. 1375-1388 ◽  
Author(s):  
M. Goldstein ◽  
W. H. Ow

Let G be a domain in the complex plane and F a nonempty subset of G such that F is the closure in G of its interior F0. We will say f ∊ C1(F) if f is continuous on F and possesses continuous first partial derivatives in F which extend continuously to F as finite-valued functions. Let G* – F be connected and locally connected, f ∊ C1(F) be harmonic in F0, and E be a subset of ∂F ∩ ∂G (here G* denotes the one-point compactification of G and the boundaries ∂F, ∂G are taken in the extended plane). Suppose there is a sequence 〈hn〉 of functions harmonic in G such thatuniformly on F as n → ∞.


1982 ◽  
Vol 25 (4) ◽  
pp. 487-490
Author(s):  
Gerd Rodé

AbstractThis paper gives a new characterization of the dimension of a normal Hausdorff space, which joins together the Eilenberg-Otto characterization and the characterization by finite coverings. The link is furnished by the notion of a system of faces of a certain type (N1,..., NK), where N1,..., NK, K are natural numbers. It is shown that a space X contains a system of faces of type (N1,..., NK) if and only if dim(X) ≥ N1 + … + NK. The two limit cases of the theorem, namely Nk = 1 for 1 ≤ k ≤ K on the one hand, and K = 1 on the other hand, give the two known results mentioned above.


1973 ◽  
Vol 16 (3) ◽  
pp. 435-437 ◽  
Author(s):  
C. Eberhart ◽  
J. B. Fugate ◽  
L. Mohler

It is well known (see [3](1)) that no continuum (i.e. compact, connected, Hausdorff space) can be written as a countable disjoint union of its (nonvoid) closed subsets. This result can be generalized in two ways into the setting of locally compact, connected, Hausdorff spaces. Using the one point compactification of a locally compact, connected, Hausdorff space X one can easily show that X cannot be written as a countable disjoint union of compact subsets. If one makes the further assumption that X is locally connected, then one can show that X cannot be written as a countable disjoint union of closed subsets.(2)


Sign in / Sign up

Export Citation Format

Share Document