Sizes of Induced Subgraphs of Ramsey Graphs

2009 ◽  
Vol 18 (4) ◽  
pp. 459-476 ◽  
Author(s):  
NOGA ALON ◽  
JÓZSEF BALOGH ◽  
ALEXANDR KOSTOCHKA ◽  
WOJCIECH SAMOTIJ

An n-vertex graph G is c-Ramsey if it contains neither a complete nor an empty induced subgraph of size greater than c log n. Erdős, Faudree and Sós conjectured that every c-Ramsey graph with n vertices contains Ω(n5/2) induced subgraphs, any two of which differ either in the number of vertices or in the number of edges, i.e., the number of distinct pairs (|V(H)|, |E(H)|), as H ranges over all induced subgraphs of G, is Ω(n5/2). We prove an Ω(n2.3693) lower bound.

2017 ◽  
Vol 27 (1) ◽  
pp. 110-123 ◽  
Author(s):  
BHARGAV NARAYANAN ◽  
ISTVÁN TOMON

Let hom(G) denote the size of the largest clique or independent set of a graphG. In 2007, Bukh and Sudakov proved that everyn-vertex graphGwith hom(G) =O(logn) contains an induced subgraph with Ω(n1/2) distinct degrees, and raised the question of deciding whether an analogous result holds for everyn-vertex graphGwith hom(G) =O(nϵ), whereϵ> 0 is a fixed constant. Here, we answer their question in the affirmative and show that every graphGonnvertices contains an induced subgraph with Ω((n/hom(G))1/2) distinct degrees. We also prove a stronger result for graphs with large cliques or independent sets and show, for any fixedk∈ ℕ, that if ann-vertex graphGcontains no induced subgraph withkdistinct degrees, then hom(G)⩾n/(k− 1) −o(n); this bound is essentially best possible.


10.37236/5095 ◽  
2016 ◽  
Vol 23 (1) ◽  
Author(s):  
Sarah Behrens ◽  
Catherine Erbes ◽  
Michael Santana ◽  
Derrek Yager ◽  
Elyse Yeager

Given graphs $G$ and $H$, $G$ is $H$-saturated if $H$ is not a subgraph of $G$, but for all $e \notin E(G)$, $H$ appears as a subgraph of $G + e$. While for every $n \ge |V(H)|$, there exists an $n$-vertex graph that is $H$-saturated, the same does not hold for induced subgraphs. That is, there exist graphs $H$ and values of $n \ge |V(H)|$, for which every $n$-vertex graph $G$ either contains $H$ as an induced subgraph, or there exists $e \notin E(G)$ such that $G + e$ does not contain $H$ as an induced subgraph. To circumvent this Martin and Smith make use of a generalized notion of "graph" when introducing the concept of induced saturation and the induced saturation number of graphs. This allows for edges that can be included or excluded when searching for an induced copy of $H$, and the induced saturation number is the minimum number of such edges that are required.In this paper, we show that the induced saturation number of many common graphs is zero. This yields graphs that are $H$-induced-saturated. That is, graphs such that no induced copy of $H$ exists, but adding or deleting any edge creates an induced copy of $H$. We introduce a new parameter for such graphs, indsat*($n;H$), which is the minimum number of edges in an $H$-induced-saturated graph. We provide bounds on indsat*($n;H$) for many graphs. In particular, we determine indsat*($n;H$) completely when $H$ is the paw graph $K_{1,3}+e$, and we determine indsat*(n;$K_{1,3}$) within an additive constant of four.


2020 ◽  
Author(s):  
Timothy Gowers ◽  
Oliver Janzer

[Ramsey's Theorem](https://en.wikipedia.org/wiki/Ramsey%27s_theorem) is one of the most prominent results in graph theory. In its simplest form, it asserts that every sufficiently large two-edge-colored complete graph contains a large monochromatic complete subgraph. This theorem has been generalized to a plethora of statements asserting that every sufficiently large structure of a given kind contains a large "tame" substructure. The article concerns a closely related problem: for a structure with a given property, find a substructure possessing an even stronger property. For example, what is the largest $K_3$-free induced subgraph of an $n$-vertex $K_4$-free graph? The answer to this question is approximately $n^{1/2}$. The lower bound is easy. If a given graph has a vertex of degree at least $n^{1/2}$, then its neighbors induce a $K_3$-free subgraph with at least $n^{1/2}$ vertices. Otherwise, a greedy procedure yields an independent set of size almost $n^{1/2}$. The argument generalizes to $K_s$-free induced subgraphs of $K_{s+1}$-free graphs. Dudek, Retter and Rödl provided a construction showing that the exponent $1/2$ cannot be improved and asked whether the same is the case for $K_s$-free induced subgraphs of $K_{s+2}$-free graphs. The authors answer this question by providing a construction of $K_{s+2}$-free $n$-vertex graphs with no $K_s$-free induced subgraph with $n^{\alpha_s}$ vertices with $\alpha_s<1/2$ for every $s\ge 3$. Their arguments extend to the case of $K_t$-free graphs with no large $K_s$-free induced subgraph for $s+2\le t\le 2s-1$ and $s\ge 3$.


10.37236/93 ◽  
2009 ◽  
Vol 16 (1) ◽  
Author(s):  
Guy Wolfovitz

We consider the next random process for generating a maximal $H$-free graph: Given a fixed graph $H$ and an integer $n$, start by taking a uniformly random permutation of the edges of the complete $n$-vertex graph $K_n$. Then, traverse the edges of $K_n$ according to the order imposed by the permutation and add each traversed edge to an (initially empty) evolving $n$-vertex graph - unless its addition creates a copy of $H$. The result of this process is a maximal $H$-free graph ${\Bbb M}_n(H)$. Our main result is a new lower bound on the expected number of edges in ${\Bbb M}_n(H)$, for $H$ that is regular, strictly $2$-balanced. As a corollary, we obtain new lower bounds for Turán numbers of complete, balanced bipartite graphs. Namely, for fixed $r \ge 5$, we show that ex$(n, K_{r,r}) = \Omega(n^{2-2/(r+1)}(\ln\ln n)^{1/(r^2-1)})$. This improves an old lower bound of Erdős and Spencer. Our result relies on giving a non-trivial lower bound on the probability that a given edge is included in ${\Bbb M}_n(H)$, conditioned on the event that the edge is traversed relatively (but not trivially) early during the process.


10.37236/976 ◽  
2007 ◽  
Vol 14 (1) ◽  
Author(s):  
Tomás Feder ◽  
Pavol Hell ◽  
Wing Xie

Each $m$ by $m$ symmetric matrix $M$ over $0, 1, *$, defines a partition problem, in which an input graph $G$ is to be partitioned into $m$ parts with adjacencies governed by $M$, in the sense that two distinct vertices in (possibly equal) parts $i$ and $j$ are adjacent if $M(i,j)=1$, and nonadjacent if $M(i,j)=0$. (The entry $*$ implies no restriction.) We ask which matrix partition problems admit a characterization by a finite set of forbidden induced subgraphs. We prove that matrices containing a certain two by two diagonal submatrix $S$ never have such characterizations. We then develop a recursive technique that allows us (with some extra effort) to verify that matrices without $S$ of size five or less always have a finite forbidden induced subgraph characterization. However, we exhibit a six by six matrix without $S$ which cannot be characterized by finitely many induced subgraphs. We also explore the connection between finite forbidden subgraph characterizations and related questions on the descriptive and computational complexity of matrix partition problems.


2013 ◽  
Vol 05 (03) ◽  
pp. 1350012 ◽  
Author(s):  
N. SRIDHARAN ◽  
S. AMUTHA ◽  
S. B. RAO

Let G be a graph. The gamma graph of G denoted by γ ⋅ G is the graph with vertex set V(γ ⋅ G) as the set of all γ-sets of G and two vertices D and S of γ ⋅ G are adjacent if and only if |D ∩ S| = γ(G) – 1. A graph H is said to be a γ-graph if there exists a graph G such that γ ⋅ G is isomorphic to H. In this paper, we show that every induced subgraph of a γ-graph is also a γ-graph. Furthermore, if we prove that H is a γ-graph, then there exists a sequence {Gn} of non-isomorphic graphs such that H = γ ⋅ Gn for every n.


Author(s):  
NOGA ALON ◽  
RAJKO NENADOV

AbstractWe show that for any constant Δ ≥ 2, there exists a graph Γ withO(nΔ / 2) vertices which contains everyn-vertex graph with maximum degree Δ as an induced subgraph. For odd Δ this significantly improves the best-known earlier bound and is optimal up to a constant factor, as it is known that any such graph must have at least Ω(nΔ/2) vertices.


1992 ◽  
Vol 1 (4) ◽  
pp. 335-349 ◽  
Author(s):  
A. D. Scott

We prove that every connected graph of order n ≥ 2 has an induced subgraph with all degrees odd of order at least cn/log n, where cis a constant. We also give a bound in terms of chromatic number, and resolve the analogous problem for random graphs.


2021 ◽  
Vol 28 (4) ◽  
Author(s):  
Manuel Aprile ◽  
Samuel Fiorini ◽  
Tony Huynh ◽  
Gwenaël Joret ◽  
David R. Wood

Let $G$ be a connected $n$-vertex graph in a proper minor-closed class $\mathcal G$. We prove that the extension complexity of the spanning tree polytope of $G$ is $O(n^{3/2})$. This improves on the $O(n^2)$ bounds following from the work of Wong (1980) and Martin (1991). It also extends a result of Fiorini, Huynh, Joret, and Pashkovich (2017), who obtained a $O(n^{3/2})$ bound for graphs embedded in a fixed surface. Our proof works more generally for all graph classes admitting strongly sublinear balanced separators: We prove that for every constant $\beta$ with $0<\beta<1$, if $\mathcal G$ is a graph class closed under induced subgraphs such that all $n$-vertex graphs in $\mathcal G$ have balanced separators of size $O(n^\beta)$, then the extension complexity of the spanning tree polytope of every connected $n$-vertex graph in $\mathcal{G}$ is $O(n^{1+\beta})$. We in fact give two proofs of this result, one is a direct construction of the extended formulation, the other is via communication protocols. Using the latter approach we also give a short proof of the $O(n)$ bound for planar graphs due to Williams (2002).


2009 ◽  
Vol Vol. 11 no. 1 (Graph and Algorithms) ◽  
Author(s):  
Petr Gregor ◽  
Riste Škrekovski

Graphs and Algorithms International audience In this paper, we study long cycles in induced subgraphs of hypercubes obtained by removing a given set of faulty vertices such that every two faults are distant. First, we show that every induced subgraph of Q(n) with minimum degree n - 1 contains a cycle of length at least 2(n) - 2(f) where f is the number of removed vertices. This length is the best possible when all removed vertices are from the same bipartite class of Q(n). Next, we prove that every induced subgraph of Q(n) obtained by removing vertices of some given set M of edges of Q(n) contains a Hamiltonian cycle if every two edges of M are at distance at least 3. The last result shows that the shell of every linear code with odd minimum distance at least 3 contains a Hamiltonian cycle. In all these results we obtain significantly more tolerable faulty vertices than in the previously known results. We also conjecture that every induced subgraph of Q(n) obtained by removing a balanced set of vertices with minimum distance at least 3 contains a Hamiltonian cycle.


Sign in / Sign up

Export Citation Format

Share Document