scholarly journals Path Ramsey Number for Random Graphs

2015 ◽  
Vol 25 (4) ◽  
pp. 612-622 ◽  
Author(s):  
SHOHAM LETZTER

Answering a question raised by Dudek and Prałat, we show that if pn → ∞, w.h.p., whenever G = G(n, p) is 2-edge-coloured there is a monochromatic path of length (2/3 + o(1))n. This result is optimal in the sense that 2/3 cannot be replaced by a larger constant.As part of the proof we obtain the following result. Given a graph G on n vertices with at least $(1-\varepsilon)\binom{n}{2}$ edges, whenever G is 2-edge-coloured, there is a monochromatic path of length at least $(2/3 - 110\sqrt{\varepsilon})n$. This is an extension of the classical result by Gerencsér and Gyárfás which says that whenever Kn is 2-coloured there is a monochromatic path of length at least 2n/3.

1995 ◽  
Vol 4 (3) ◽  
pp. 217-239 ◽  
Author(s):  
P. E. Haxell ◽  
Y. Kohayakawa ◽  
T. Łuczak

For a graph H and an integer r ≥ 2, the induced r-size-Ramsey number of H is defined to be the smallest integer m for which there exists a graph G with m edges with the following property: however one colours the edges of G with r colours, there always exists a monochromatic induced subgraph H′ of G that is isomorphic to H. This is a concept closely related to the classical r-size-Ramsey number of Erdős, Faudree, Rousseau and Schelp, and to the r-induced Ramsey number, a natural notion that appears in problems and conjectures due to, among others, Graham and Rödl, and Trotter. Here, we prove a result that implies that the induced r-size-Ramsey number of the cycle Cℓ is at most crℓ for some constant cr that depends only upon r. Thus we settle a conjecture of Graham and Rödl, which states that the above holds for the path Pℓ of order ℓ and also generalise in part a result of Bollobás, Burr and Reimer that implies that the r-size Ramsey number of the cycle Cℓ is linear in ℓ Our method of proof is heavily based on techniques from the theory of random graphs and on a variant of the powerful regularity lemma of Szemerédi.


2018 ◽  
Author(s):  
Bruno Pasqualotto Cavalar

The Ramsey number R(H) of a graph H is the minimum number n such that there exists a graph G on n vertices with the property that every two-coloring of its edges contains a monochromatic copy of H. In this work we study a variant of this notion, called the oriented Ramsey problem, for an acyclic oriented graph H~ , in which we require that every orientation G~ of the graph G contains a copy of H~ . We also study the threshold function for this problem in random graphs. Finally, we consider the isometric case, in which we require the copy to be isometric, by which we mean that, for every two vertices x, y 2 V (H~ ) and their respective copies x0, y0 in G~ , the distance between x and y is equal to the distance between x0 and y0.


Author(s):  
V. F. Kolchin
Keyword(s):  

Author(s):  
A.C.C. Coolen ◽  
A. Annibale ◽  
E.S. Roberts

This chapter reviews graph generation techniques in the context of applications. The first case study is power grids, where proposed strategies to prevent blackouts have been tested on tailored random graphs. The second case study is in social networks. Applications of random graphs to social networks are extremely wide ranging – the particular aspect looked at here is modelling the spread of disease on a social network – and how a particular construction based on projecting from a bipartite graph successfully captures some of the clustering observed in real social networks. The third case study is on null models of food webs, discussing the specific constraints relevant to this application, and the topological features which may contribute to the stability of an ecosystem. The final case study is taken from molecular biology, discussing the importance of unbiased graph sampling when considering if motifs are over-represented in a protein–protein interaction network.


Author(s):  
Mark Newman

An introduction to the mathematics of the Poisson random graph, the simplest model of a random network. The chapter starts with a definition of the model, followed by derivations of basic properties like the mean degree, degree distribution, and clustering coefficient. This is followed with a detailed derivation of the large-scale structural properties of random graphs, including the position of the phase transition at which a giant component appears, the size of the giant component, the average size of the small components, and the expected diameter of the network. The chapter ends with a discussion of some of the shortcomings of the random graph model.


Mathematics ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 735
Author(s):  
Tomasz Dzido ◽  
Renata Zakrzewska

We consider the important generalisation of Ramsey numbers, namely on-line Ramsey numbers. It is easiest to understand them by considering a game between two players, a Builder and Painter, on an infinite set of vertices. In each round, the Builder joins two non-adjacent vertices with an edge, and the Painter colors the edge red or blue. An on-line Ramsey number r˜(G,H) is the minimum number of rounds it takes the Builder to force the Painter to create a red copy of graph G or a blue copy of graph H, assuming that both the Builder and Painter play perfectly. The Painter’s goal is to resist to do so for as long as possible. In this paper, we consider the case where G is a path P4 and H is a path P10 or P11.


Sign in / Sign up

Export Citation Format

Share Document