scholarly journals Ramsey-type numbers involving graphs and hypergraphs with large girth

Author(s):  
Hiêp Hàn ◽  
Troy Retter ◽  
Vojtêch Rödl ◽  
Mathias Schacht

Abstract Erdős asked if, for every pair of positive integers g and k, there exists a graph H having girth (H) = k and the property that every r-colouring of the edges of H yields a monochromatic cycle C k . The existence of such graphs H was confirmed by the third author and Ruciński. We consider the related numerical problem of estimating the order of the smallest graph H with this property for given integers r and k. We show that there exists a graph H on R10k2; k15k3 vertices (where R = R(C k ; r) is the r-colour Ramsey number for the cycle C k ) having girth (H) = k and the Ramsey property that every r-colouring of the edges of H yields a monochromatic C k Two related numerical problems regarding arithmetic progressions in subsets of the integers and cliques in graphs are also considered.

2009 ◽  
Vol 05 (04) ◽  
pp. 625-634
Author(s):  
SERGEI V. KONYAGIN ◽  
MELVYN B. NATHANSON

Consider the congruence class Rm(a) = {a + im : i ∈ Z} and the infinite arithmetic progression Pm(a) = {a + im : i ∈ N0}. For positive integers a,b,c,d,m the sum of products set Rm(a)Rm(b) + Rm(c)Rm(d) consists of all integers of the form (a+im) · (b+jm)+(c+km)(d+ℓm) for some i,j,k,ℓ ∈ Z. It is proved that if gcd (a,b,c,d,m) = 1, then Rm(a)Rm(b) + Rm(c)Rm(d) is equal to the congruence class Rm(ab+cd), and that the sum of products set Pm(a)Pm(b)+Pm(c)Pm eventually coincides with the infinite arithmetic progression Pm(ab+cd).


2015 ◽  
Vol 58 (4) ◽  
pp. 858-868 ◽  
Author(s):  
Kenneth S. Williams

AbstractLet denote the Dedekind eta function. We use a recent productto- sum formula in conjunction with conditions for the non-representability of integers by certain ternary quadratic forms to give explicitly ten eta quotientssuch that the Fourier coefficients c(n) vanish for all positive integers n in each of infinitely many non-overlapping arithmetic progressions. For example, we show that if we have c(n) = 0 for all n in each of the arithmetic progressions


1985 ◽  
Vol 27 ◽  
pp. 5-10
Author(s):  
S. A. Burr ◽  
P. Erdös

Let A be a sequence of positive integers. Define P(A) to be the set of all integers representable as a sum of distinct terms of A. Note that if A contains a repeated value, we are free to use it as many times as it occurs in A. We call A complete if every sufficiently large positive integer is in P(A), and entirely complete if every positive integer is in P(A). Completeness properties have received considerable, if somewhat sporadic, attention over the years. See Chapter 6 of [3] for a survey.


2020 ◽  
Vol 16 (10) ◽  
pp. 2141-2148
Author(s):  
A. G. Earnest ◽  
Ji Young Kim

For every positive integer [Formula: see text], it is shown that there exists a positive definite diagonal quaternary integral quadratic form that represents all positive integers except for precisely those which lie in [Formula: see text] arithmetic progressions. For [Formula: see text], all forms with this property are determined.


2000 ◽  
Vol 157 ◽  
pp. 103-127 ◽  
Author(s):  
Ti Zuo Xuan

For real x ≥ y ≥ 2 and positive integers a, q, let Φ(x, y; a, q) denote the number of positive integers ≤ x, free of prime factors ≤ y and satisfying n ≡ a (mod q). By the fundamental lemma of sieve, it follows that for (a,q) = 1, Φ(x,y;a,q) = φ(q)-1, Φ(x, y){1 + O(exp(-u(log u- log2 3u- 2))) + (u = log x log y) holds uniformly in a wider ranges of x, y and q.Let χ be any character to the modulus q, and L(s, χ) be the corresponding L-function. Let be a (‘exceptional’) real character to the modulus q for which L(s, ) have a (‘exceptional’) real zero satisfying > 1 - c0/log q. In the paper, we prove that in a slightly short range of q the above first error term can be replaced by where ρ(u) is Dickman function, and ρ′(u) = dρ(u)/du.The result is an analogue of the prime number theorem for arithmetic progressions. From the result can deduce that the above first error term can be omitted, if suppose that 1 < q < (log q)A.


2012 ◽  
Vol 92 (1) ◽  
pp. 45-60 ◽  
Author(s):  
AARON EKSTROM ◽  
CARL POMERANCE ◽  
DINESH S. THAKUR

AbstractIn 1987, Gordon gave an integer primality condition similar to the familiar test based on Fermat’s little theorem, but based instead on the arithmetic of elliptic curves with complex multiplication. We prove the existence of infinitely many composite numbers simultaneously passing all elliptic curve primality tests assuming a weak form of a standard conjecture on the bound on the least prime in (special) arithmetic progressions. Our results are somewhat more general than both the 1999 dissertation of the first author (written under the direction of the third author) and a 2010 paper on Carmichael numbers in a residue class written by Banks and the second author.


2014 ◽  
Vol 12 (7) ◽  
Author(s):  
Paulina Szczuka

AbstractIn this paper we characterize the closures of arithmetic progressions in the topology T on the set of positive integers with the base consisting of arithmetic progressions {an + b} such that if the prime number p is a factor of a, then it is also a factor of b. The topology T is called the common division topology.


2017 ◽  
Vol 13 (3) ◽  
pp. 7219-7229
Author(s):  
R Arul ◽  
A Ashok ◽  
G Ayyappan

In this paper we study the oscillation and asymptotic behavior of the third orderneutral dierential equation with \maxima" of the formwhere is the quotient of odd positive integers. Some examples are given toillustrate the main results.


2008 ◽  
Vol 45 (1) ◽  
pp. 29-66
Author(s):  
Claus Bauer

It is proved that for a given integer N and for all but ⪡ (log N ) B prime numbers k ≦ N5/96 − ε the following is true: For any positive integers bi , i ∈ {1, 2, 3, 4, 5}, ( bi , k ) = 1 that satisfy N ≡ b12 + b22 + b32 + b42 + b52 (mod k ), N can be written as N = p12 + p22 + p32 + p42 + p52 , where the pi , i ∈ {1, 2, 3, 4, 5} are prime numbers that satisfy pi ≡ bi (mod k ).


2014 ◽  
Vol 57 (3) ◽  
pp. 551-561 ◽  
Author(s):  
Daniel M. Kane ◽  
Scott Duke Kominers

AbstractFor relatively prime positive integers u0 and r, we consider the least common multiple Ln := lcm(u0, u1..., un) of the finite arithmetic progression . We derive new lower bounds on Ln that improve upon those obtained previously when either u0 or n is large. When r is prime, our best bound is sharp up to a factor of n + 1 for u0 properly chosen, and is also nearly sharp as n → ∞.


Sign in / Sign up

Export Citation Format

Share Document