scholarly journals Fertilizability and chromosomal integrity of frozen-thawed Bryde's whale (Balaenoptera edeni) spermatozoa intracytoplasmically injected into mouse oocytes

Zygote ◽  
2007 ◽  
Vol 15 (1) ◽  
pp. 9-14 ◽  
Author(s):  
H. Watanabe ◽  
H. Tateno ◽  
H. Kusakabe ◽  
T. Matsuoka ◽  
Y. Kamiguchi ◽  
...  

SUMMARYPrior to attempting the in vitro production of embryos in the Bryde's whale (Balaenoputera edeni), we investigated whether spermatozoa can retain the capacity for oocyte activation and pronucleus formation as well as chromosomal integrity under cryopreservation by using intracytoplasmic sperm injection (ICSI) into mouse oocytes. Regardless of motility and viability, whale spermatozoa efficiently led to the activation of mouse oocytes (90.3–97.4%), and sperm nuclei successfully transformed into male pronucleus within activated ooplasm (87.2–93.6%). Chromosome analysis at the first cleavage metaphase (M) of the hybrid zygotes revealed that a majority (95.2%) of motile spermatozoa had the normal chromosome complement, while the percentage of chromosomal normality was significantly reduced to 63.5% in immotile spermatozoa and 50.0% in dead spermatozoa due to the increase in structural chromosome aberrations. This is the first report showing that motile Bryde's whale spermatozoa are competent to support embryonic development.

2007 ◽  
Vol 19 (1) ◽  
pp. 306
Author(s):  
H. Watanabe ◽  
H. Tateno ◽  
H. Kusakabe ◽  
Y. Kamiguchi ◽  
Y. Fujise ◽  
...  

In this study, we applied intracytoplasmic sperm injection (ICSI) to mouse oocytes to evaluate the fertilizability and chromosomal integrity of the three types of frozen–thawed Bryde's whale spermatozoa. B6D2F1 female mice (7–11 weeks of age) were superovulated by injections of PMSG followed by hCG 48 h later. The oocytes recovered from oviducts between 14 and 16 h after hCG injection were denuded of their cumulus cells. Sperm samples were obtained from a Bryde's whale (Balaenoptera edeni) captured under the Japanese Whale Research Program with Special Permit in the Western North Pacific between May and August 2003 (presumptive feeding season). The whale was killed by an explosive harpoon which has been recognized as the best humane method for whales by the International Whaling Commission (IWC) and stipulated by Schedule III (Capture) of the International Convention for the Regulation of Whaling. Spermatozoa collected from vasa deferentia were cryopreserved. Frozen Bryde's whale spermatozoa were thawed at 37�C and washed with HEPES-TYH by centrifugation at 500g for 5 min. Motile and immotile spermatozoa were obtained, and some spermatozoa in HEPES-TYH were refrozen without cryoprotectant at -20�C to be completely killed. Within 24 h, they were thawed at 37�C and prepared for ICSI. Comparison of group values was performed by either Fisher's exact probability test or chi-square test where necessary. Differences at P d 0.05 were considered significant. Chromosomal normality was determined by analyses of karyotyped haploid chromosomes (n = 22) of the whale sperm. Regardless of motility and viability, whale spermatozoa efficiently led to the activation of mouse oocytes (90.3–97.4%), and sperm nuclei successfully transformed into male pronuclei within activated ooplasm (87.2–93.6%). Chromosome analysis at the first cleavage metaphase of the hybrid zygotes revealed that a majority (95.2%) of motile spermatozoa had the normal chromosome complement, whereas the percentage of chromosomal normality was significantly (P ≤ 0.001) reduced to 63.5% in immotile spermatozoa and 50.0% in dead spermatozoa, due to the increase in structural chromosome aberrations such as chromosome fragments. This is the first report showing that motile Bryde's whale spermatozoa are competent to support embryonic development. Furthermore, we have shown that chromosomal analysis of whale spermatozoa is a useful technique for measuring the influences of marine pollution on reproduction in cetacean species that occupy the top niche in the marine ecosystem.


Zygote ◽  
1998 ◽  
Vol 6 (1) ◽  
pp. 65-73 ◽  
Author(s):  
Daniel Szöllösi ◽  
Renata Czołowska ◽  
Ewa Borsuk ◽  
Maria S. Szöllösi ◽  
Pascale Debey

SummaryNuclei of embryonic red blood cells (e-RBC) from 12-day mouse fetuses are arrested in Go phase of the cell cycle and have low transcriptional activity. These nuclei were transferred with help of polyethylene glycol (PEG)-mediated fusion to parthenogenetically activated mouse oocytes and heterokaryons were analysed for nuclear structure and transcriptional activity. If fusion proceeded 25–45 min after oocyte activation, e-RBC nuclei were induced to nuclear envelope breakdown and partial chromatin condensation, followed by formation of nuclei structurally identical with pronuclei. These ‘pronuclei’, similar to egg (female) pronuclei, remained transcriptionally silent over several hours of in vitro culture. If fusion was performed 1 h or later (up to 7 h) after activation, the nuclear envelope of e-RBC nuclei remained intact and nuclear remodelling was less spectacular (slight chromatin decondensation, formation of nucleolus precursor bodies). These nuclei, however, reinforced polymerase-II-dependent transcription within a few hours of in vitro culture. Our present experiments, together with our previous work, demonstrate that nuclear envelope breakdown/maintenance are critical events for nuclear remodelling in activated mouse oocytes and that somatic dormant nuclei can be stimulated to renew transcription at a time when the female pronucleus remains transcriptionally silent.


Zygote ◽  
2003 ◽  
Vol 11 (1) ◽  
pp. 69-76 ◽  
Author(s):  
S.A. Ock ◽  
J.S. Bhak ◽  
S. Balasubramanian ◽  
H.J. Lee ◽  
S.Y. Choe ◽  
...  

In this study, the developmental capacity and cytogenetic composition of different oocyte activation protocols was evaluated following intracytoplasmic sperm injection (ICSI) of in vitro matured bovine oocytes. Motile spermatozoa selected by Percoll density gradient were treated with 5 mM dithiothreitol (DTT) and analysed for ultrastructural changes of the head using transmission electron microscopy (TEM). The alterations in sperm morphology after DTT treatment for different times (15, 30 and 60 min) were 10%, 45-55% and 70-85%, respectively. Further, a partial decondensation of sperm heads was observed after DTT treatment for 30 min. Oocytes were injected with sperm treated with DTT for 30 min. In group 1, sperm injection was performed without any activation stimulus to the oocytes. In group 2, sham injection without sperm was performed without activating the oocytes. Oocytes injected with sperm exposed to 5 μM ionomycin for 5 min (group 3), 5 μM ionomycin + 1.9 mM dimethylaminopurine (DMAP) for 3 h (group 4) and 5 µM ionomycin + 3 h culture in M199 + 1.9 mM DMAP (group 5) were also evaluated for cleavage, development and chromosomal abnormality. Cleavage and development rates in groups 1, 2 and 3 were significantly (p < 0.05) lower than those in groups 4 and 5. The incidence of chromosomal abnormality in the embryos treated directly with DMAP after ionomycin (group 4) was higher than in group 5. We conclude that immediate DMAP treatment after ionomycin exposure of oocytes results in arrest of release of the second polar body, and thus leads to changes in chromosomal pattern. Therefore, the time interval between ionomycin and DMAP plays a crucial role in bovine ICSI.


2009 ◽  
Vol 21 (1) ◽  
pp. 217
Author(s):  
T. Wakai ◽  
N. Zhang ◽  
R. A. Fissore

Numerous studies have demonstrated that postovulatory aging of oocytes prior to fertilization has detrimental effects on oocyte quality and developmental competence. Oocyte aging is accompanied by abnormal oocyte activation and subsequent development, suggesting a disruption of Ca2+ oscillations after fertilization. The inositol 1,4,5-trisphosphate receptor type 1 (IP3R1) in mammals is responsible for the majority of Ca2+ release during fertilization (Miyazaki S et al. 1993 Dev. Biol.). Previously, we reported that phosphorylation of IP3R1 at an MPM-2 epitope may play an important role in facilitating the induction of Ca2+ oscillations at the MII stage (Lee B et al. 2006 Development), indicating that IP3R1 phosphorylation may be a good indicator of the health of the oocyte. However, few studies have investigated the alteration of the Ca2+ signaling and IP3R1 function associated with oocyte aging. On the other hand, a previous report showed that caffeine increased MPF activity and suppressed fragmentation after parthenogenetic activation of aged oocytes (Kikuchi K et al. 2000 Biol. Reprod.). Therefore, the purpose of the present study was to examine whether and how Ca2+ oscillatory activity changes during oocyte aging and to test if caffeine prevents the negative effects of oocyte aging. MII mouse oocytes were collected 14 h after hCG injection and cultured in vitro for 8, 24 or 48 h with or without caffeine (5 or 10 mm). Oocyte quality was assessed by the occurrence of spontaneous fragmentation, monitoring of Ca2+ oscillations after exposure to 10 mm strontium chloride, Western blot analysis of IP3R1 phosphorylation and immunostaining of IP3R1. In oocytes in vitro aged for 8 h, the duration of the first Ca2+ rise was significantly decreased compared with fresh MII oocytes, although this reduction was not observed in MII oocytes treated with 5 mm caffeine. The phosphorylation of IP3R1 at the MPM-2 epitope was slightly decreased during oocyte aging in both caffeine and noncaffeine treatment. Importantly, whereas IP3R1 in MII oocytes treated for 8 h with 5 mm caffeine displayed the typical cortical cluster organization, IP3R1 in aged oocytes without caffeine became dispersed in the cytoplasm. In addition, caffeine significantly suppressed the spontaneous fragmentation that is normally observed by 48 h of in vitro culture. These results suggest that the Ca2+ oscillatory activity is compromised during oocyte aging and caffeine prevents the loss of integrity of Ca2+ signaling possibly by keeping the cortical distribution of IP3R1.


2020 ◽  
Author(s):  
Omar Farhan Ammar ◽  
Therishnee Moodley

Abstract Objectives: Ca2+ is critical for normal oocyte activation and fertilization, and any alteration to the Ca2+ homeostasis may lead to failed fertilization or even cell death. It has been shown that intracellular Ca2+ is increased in bovine and human oocytes when cultured in vitro. Additionally, ATP sensitive potassium channels have been characterised recently in human and Xenopus oocytes. Glibenclamide a KATP channel blocker was shown to protect human oocytes from Ca+2 overloading via inhibition of plasmalemmal KATP channels. This research note aims to demonstrate the effects of oxidative stress and in vitro ageing on the intracellular Ca+2 and plasmalemmal membrane potential dynamics in cryopreserved metaphase II (MII) mouse oocytes. Also, this study aims to show if glibenclamide (a KATP channel blocker ) has a role in regulating intracellular Ca+2 and plasmalemmal membrane potential through KATP channels in cryopreserved metaphase II mouse oocytes.Results: our data did not show an increase in intracellular Ca2+ in untreated cryopreserved mouse oocytes loaded with Fluo-3 AM dye. However, an increase in the plasmalemmal membrane potential was noticed (hyperpolarization). Glibenclamide has shown no significant effect on Ca2+ and plasmalemmal membrane potential.


2008 ◽  
Vol 20 (1) ◽  
pp. 194
Author(s):  
C. B. Fernandes ◽  
L. G. Devito ◽  
L. R. Martins ◽  
T. S. Rascado ◽  
F. C. Landim-Alvarenga

In all mammalian species studied so far, fertilization induces oocyte activation necessary for pronuclear formation, syngamy, and the beginning of embryonic cleavage. The aim of this experiment was to evaluate the effectiveness of a protocol for artificial activation for bovine oocytes using ionomycin and roscovitine either in combination with intracytoplasmic sperm injection (ICSI) or alone. In this study, ionomycin was used to facilitate the increase of intracellular calcium, due to the release of calcium from intracellular stores. This compound was used in conjuction with roscovitine, a specific cdc2 kinase inhibitor. The success of the treatment was compared with that of oocytes fertilized by IVF. Three replicates were carried out using bovine oocytes harvested from slaughterhouse ovaries. In vitro-matured oocytes were cultured in TCM-199 plus 10% FCS, pyruvate, estradiol, hCG, and gentamicin at 39�C in an atmosphere of 5% of CO2 in air for 20 h. After in vitro maturation, oocytes were divided into 3 groups. For parthenogenetic activation, 100 oocytes were stripped of cumulus cells and placed in H-MEM plus 10% FCS and 5 µm ionomycin for 8 min, maintained in H-MEM plus 10% FCS, 66 mm roscovitine and 7.5 mg mL–1 cytochalasin B for 6 h, and placed into culture. In the ICSI group, oocytes were denuded and transferred to 5-µL H-MEM plus 20% FCS drops. Only MII oocytes were microinjected. The sperm drop was prepared with a mixture of 4 µL polyvinylpyrrolidone (PVP) and 1 µL of the sperm suspension produced by Percoll gradient. For injection, a single normal mobile sperm was aspirated with the tail first. A single oocyte was fixed by holding the pipette to position the polar body at the 6 or 12 o'clock position. The injection pipette was pushed through the zona pellucida and the oolema and the spermatozoan was released into the cytoplasm. After ICSI, the oocytes were subjected to the same activation protocol described earlier and cultured. For IVF, sperm was prepared by swim-up and 100 oocytes were fertilized in Fert-Talp for 18 h (sperm concentration: 1 � 106). All oocytes were cultured in HTF:BME plus 0.6% BSA, 10% FCS, 0.01% myoinositol, and gentamycin at 39�C in an atmosphere of 5% of CO2 in air for 72 h. Cleavage was evaluated visually and the embryos were stained with Hoechst 33342 for estimation of nuclei numbers. The data were analyzed by ANOVA, followed by the Tukey test (P < 0.05). The results showed a cleavage rate of 76% for the IVF group, 57% for the ICSI group, and 51% for the parthenogenic group. The artificial activation proposed was efficient in inducing oocyte activation and cleavage; however, the rates obtained were significantly lower then the ones observed after IVF. Injection of a viable sperm into the oocyte through ICSI did not improve the cleavage rate after activation. This result indicates that the membrane fusion and/or sperm interaction with the oocyte during fertilization is important for the physiological modifications that result in oocyte cleavage in bovine.


2007 ◽  
Vol 19 (1) ◽  
pp. 302
Author(s):  
C. Kani ◽  
M. Takenaka ◽  
T. Muneto ◽  
M. Yamamoto ◽  
T. Horiuchi

In vitro spermatogenesis can be applied to generate spermatids or spermatozoa and produce a genetically modified male germ line. Intracytoplasmic injection of the spermatids or spermatozoa is an important technique for effective production of offspring. The objective of this study is to evaluate oocyte-activation capacity of bovine spermatids or spermatozoa and to determine the effective activation treatment for in vitro development of bovine oocytes injected with round spermatids. Cryopreserved testicular spermatogenic cells and cauda epididymal spermatozoa obtained from a 1-year-old Japanese bull were used. In the first experiment, we injected bovine round (ROS) and elongated (ELS) spermatids, or testicular (TES) and cauda epididymal (CES) spermatozoa into mouse oocytes to examine their oocyte-activating capacity. The presence of pronuclei within whole-mounted oocytes was observed 4 h after injection. In the second experiment, we injected similar spermatids and spermatozoa into bovine oocytes without additional activation, and examined cleavage and blastocyst development. In the third experiment, bovine oocytes injected with ROS were activated with 7% ethanol or 5 �M ionomycin for 5 min (1 � Et or 1 � Iono) immediately after injection; some were further activated repeatedly at 3 h after injection (2 � Et or 2 � Iono), and some of these were subjected to 1.9 mM 6-dimethylaminopurine (DMAP) for 3 h after the second activation (2 � Et + DMAP or 2 � Iono + DMAP). Data were analyzed by the chi-square test in all experiments. The vast majority of bovine ROS failed to activate mouse oocytes (activation rate 10%). Activation rates of mouse oocytes injected with bovine ELS, TES, and CES were 61%, 75%, and 91%, respectively. The results suggest that oocyte-activation capacity is acquired during transformation from ROS to ELS. Cleavage and blastocyst rates of bovine oocytes injected with CES (59% and 19%, respectively) were significantly higher (P &lt; 0.05) than the rates obtained with injections of TES (37% and 9%) and ROS (5% and 0%) without additional activation. However, cleavage and blastocyst rates of bovine oocytes injected with ROS in the groups of 2 � Et + DMAP (80% and 19%) and 2 � Iono + DMAP (76% and 19%) were significantly higher (P &lt; 0.05) than those in the groups of 1 � and 2 � Et (37% and 2%, 59% and 4%), 1 � and 2 � Iono (10% and 7%, 22% and 4%), or those receiving a sham injection and activated with 2 � Iono + DMAP (43% and 4%). These results demonstrate that intracytoplasmic injection of ROS with repeated Et or Iono activation followed by DMAP treatment is more efficient than single or double Et or Iono activation.


Zygote ◽  
2002 ◽  
Vol 10 (2) ◽  
pp. 149-153 ◽  
Author(s):  
Hong Wei ◽  
Yukata Fukui

Tail-cut bovine spermatozoa were microinjected into ooplasmic lipid polarised, in vitro matured bovine oocytes using a piezomicropipette-driving system. No exogenous oocyte activation treatment was used. Of the sperm-injected oocytes, 86.3% were activated, 71.8% cleaved and 22.7% developed to the blastocyst stage. The average cell count of the blastocysts was 122.5 ± 15 and a majority (81.8%) of the blastocysts were cytologically normal (diploid). When transferred to recipient cows, 5 of 8 blastocysts developed to fetuses and 4 of 7 recipients became pregnant. Normal offspring were born.


Sign in / Sign up

Export Citation Format

Share Document