Lectin uptake and incorporation into the calcitic spicule of sea urchin embryos

Zygote ◽  
2014 ◽  
Vol 23 (3) ◽  
pp. 467-473 ◽  
Author(s):  
Nancy M. Mozingo

SummaryPrimary mesenchyme cells (PMCs) are skeletogenenic cells that produce a calcareous endoskeleton in developing sea urchin larvae. The PMCs fuse to form a cavity in which spicule matrix proteins and calcium are secreted forming the mineralized spicule. In this study, living sea urchin embryos were stained with fluorescently conjugated wheat germ agglutinin, a lectin that preferentially binds to PMCs, and the redistribution of this fluorescent tag was examined during sea urchin development. Initially, fluorescence was associated primarily with the surface of PMCs. Subsequently, the fluorescent label redistributed to intracellular vesicles in the PMCs. As the larval skeleton developed, intracellular granular staining diminished and fluorescence appeared in the spicules. Spicules that were cleaned to remove membranous material associated with the surface exhibited bright fluorescence, which indicated that fluorescently labelled lectin had been incorporated into the spicule matrix. The results provide evidence for a cellular pathway in which material is taken up at the cell surface, sequestered in intracellular vesicles and then incorporated into the developing spicule.

Development ◽  
1993 ◽  
Vol 119 (3) ◽  
pp. 833-840 ◽  
Author(s):  
N. Armstrong ◽  
J. Hardin ◽  
D.R. McClay

In the sea urchin embryo, the primary mesenchyme cells (PMCs) make extensive contact with the ectoderm of the blastula wall. This contact is shown to influence production of the larval skeleton by the PMCs. A previous observation showed that treatment of embryos with NiCl2 can alter spicule number and skeletal pattern (Hardin et al. (1992) Development, 116, 671–685). Here, to explore the tissue sensitivity to NiCl2, experiments recombined normal or NiCl2-treated PMCs with either normal or NiCl2-treated PMC-less host embryos. We find that NiCl2 alters skeleton production by influencing the ectoderm of the blastula wall with which the PMCs interact. The ectoderm is responsible for specifying the number of spicules made by the PMCs. In addition, experiments examining skeleton production in vitro and in half- and quarter-sized embryos shows that cell interactions also influence skeleton size. PMCs grown in vitro away from interactions with the rest of the embryo, can produce larger spicules than in vivo. Thus, the epithelium of the blastula wall appears to provide spatial and scalar information that regulates skeleton production by the PMCs.


Development ◽  
2001 ◽  
Vol 128 (13) ◽  
pp. 2615-2627 ◽  
Author(s):  
Xiaodong Zhu ◽  
Gregory Mahairas ◽  
Michele Illies ◽  
R. Andrew Cameron ◽  
Eric H. Davidson ◽  
...  

The primary mesenchyme cells (PMCs) of the sea urchin embryo have been an important model system for the analysis of cell behavior during gastrulation. To gain an improved understanding of the molecular basis of PMC behavior, a set of 8293 expressed sequenced tags (ESTs) was derived from an enriched population of mid-gastrula stage PMCs. These ESTs represented approximately 1200 distinct proteins, or about 15% of the mRNAs expressed by the gastrula stage embryo. 655 proteins were similar (P<10−7 by BLAST comparisons) to other proteins in GenBank, for which some information is available concerning expression and/or function. Another 116 were similar to ESTs identified in other organisms, but not further characterized. We conservatively estimate that sequences encoding at least 435 additional proteins were included in the pool of ESTs that did not yield matches by BLAST analysis. The collection of newly identified proteins includes many candidate regulators of primary mesenchyme morphogenesis, including PMC-specific extracellular matrix proteins, cell surface proteins, spicule matrix proteins and transcription factors. This work provides a basis for linking specific molecular changes to specific cell behaviors during gastrulation. Our analysis has also led to the cloning of several key components of signaling pathways that play crucial roles in early sea urchin development.


1986 ◽  
Vol 102 (5) ◽  
pp. 1878-1886 ◽  
Author(s):  
S C Benson ◽  
N C Benson ◽  
F Wilt

The micromeres that arise at the fourth cell division in developing sea urchin embryos give rise to primary mesenchyme, which in turn differentiates and produces calcareous endoskeletal spicules. These spicules have been isolated and purified from pluteus larvae by washing in combinations of ionic and nonionic detergents followed by brief exposure to sodium hypochlorite. The spicules may be demineralized and the integral matrix dissolves. The matrix is composed of a limited number of glycoproteins rich in aspx, glux, gly, ser, and ala, a composition not unlike that found in matrix proteins of biomineralized tissues of molluscs, sponges, and arthropods. There is no evidence for collagen as a component of the matrix. The matrix contains N-linked glycoproteins of the complex type. The matrix arises primarily from proteins synthesized from late gastrulation onward, during the time that spicule deposition occurs. The mixture of proteins binds calcium and is an effective immunogen. Electrophoresis of the glycoproteins on SDS-containing acrylamide gels, followed by blotting and immunocytochemical detection, reveals major components of approximately 47, 50, 57, and 64 kD, and several minor components. These same components may be detected with silver staining or fluorography of amino acid-labeled proteins. In addition to providing convenient molecular marker for the study of the development of the micromere lineage, the spicule matrix glycoproteins provide an interesting system for investigations in biomineralization.


Sign in / Sign up

Export Citation Format

Share Document