complex type
Recently Published Documents


TOTAL DOCUMENTS

645
(FIVE YEARS 119)

H-INDEX

52
(FIVE YEARS 5)

Biomolecules ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 136
Author(s):  
David Stenitzer ◽  
Réka Mócsai ◽  
Harald Zechmeister ◽  
Ralf Reski ◽  
Eva L. Decker ◽  
...  

In the animal kingdom, a stunning variety of N-glycan structures have emerged with phylogenetic specificities of various kinds. In the plant kingdom, however, N-glycosylation appears to be strictly conservative and uniform. From mosses to all kinds of gymno- and angiosperms, land plants mainly express structures with the common pentasaccharide core substituted with xylose, core α1,3-fucose, maybe terminal GlcNAc residues and Lewis A determinants. In contrast, green algae biosynthesise unique and unusual N-glycan structures with uncommon monosaccharides, a plethora of different structures and various kinds of O-methylation. Mosses, a group of plants that are separated by at least 400 million years of evolution from vascular plants, have hitherto been seen as harbouring an N-glycosylation machinery identical to that of vascular plants. To challenge this view, we analysed the N-glycomes of several moss species using MALDI-TOF/TOF, PGC-MS/MS and GC-MS. While all species contained the plant-typical heptasaccharide with no, one or two terminal GlcNAc residues (MMXF, MGnXF and GnGnXF, respectively), many species exhibited MS signals with 14.02 Da increments as characteristic for O-methylation. Throughout all analysed moss N-glycans, the level of methylation differed strongly even within the same family. In some species, methylated glycans dominated, while others had no methylation at all. GC-MS revealed the main glycan from Funaria hygrometrica to contain 2,6-O-methylated terminal mannose. Some mosses additionally presented very large, likewise methylated complex-type N-glycans. This first finding of the methylation of N-glycans in land plants mirrors the presumable phylogenetic relation of mosses to green algae, where the O-methylation of mannose and many other monosaccharides is a common trait.


BMC Genomics ◽  
2022 ◽  
Vol 23 (1) ◽  
Author(s):  
Zherou Rong ◽  
Hongwei Chen ◽  
Zihan Zhang ◽  
Yue Zhang ◽  
Luanfeng Ge ◽  
...  

Abstract Background Cardiomyopathy is a complex type of myocardial disease, and its incidence has increased significantly in recent years. Dilated cardiomyopathy (DCM) and ischemic cardiomyopathy (ICM) are two common and indistinguishable types of cardiomyopathy. Results Here, a systematic multi-omics integration approach was proposed to identify cardiomyopathy-related core genes that could distinguish normal, DCM and ICM samples using cardiomyopathy expression profile data based on a human metabolic network. First, according to the differentially expressed genes between different states (DCM/ICM and normal, or DCM and ICM) of samples, three sets of initial modules were obtained from the human metabolic network. Two permutation tests were used to evaluate the significance of the Pearson correlation coefficient difference score of the initial modules, and three candidate modules were screened out. Then, a cardiomyopathy risk module that was significantly related to DCM and ICM was determined according to the significance of the module score based on Markov random field. Finally, based on the shortest path between cardiomyopathy known genes, 13 core genes related to cardiomyopathy were identified. These core genes were enriched in pathways and functions significantly related to cardiomyopathy and could distinguish between samples of different states. Conclusion The identified core genes might serve as potential biomarkers of cardiomyopathy. This research will contribute to identifying potential biomarkers of cardiomyopathy and to distinguishing different types of cardiomyopathy.


2022 ◽  
Author(s):  
Agata Paulina Perlinska ◽  
Wanda Helena Niemyska ◽  
Bartosz Ambrozy Gren ◽  
Pawel Rubach ◽  
Joanna Ida Sulkowska

AlphaFold is a new, highly accurate machine learning protein structure prediction method that outperforms other methods. Recently this method was used to predict the structure of 98.5% of human proteins. We analyze here the structure of these AlphaFold-predicted human proteins for the presence of knots. We found that the human proteome contains 65 robustly knotted proteins, including the most complex type of a knot yet reported in proteins. That knot type, denoted 63 in mathematical notation, would necessitate a more complex folding path than any knotted proteins characterized to date. In some cases AlphaFold structure predictions are not highly accurate, which either makes their topology hard to verify or results in topological artifacts. Other structures that we found, which are knotted, potentially knotted, and structures with artifacts (knots) we deposited in a database available at: https://knotprot.cent.uw.edu.pl/alphafold.


2021 ◽  
Author(s):  
David Stenitzer ◽  
Réka Mócsai ◽  
Harald Zechmeister ◽  
Ralf Reski ◽  
Eva L. Decker ◽  
...  

In the animal kingdom, a stunning variety of N-glycan structures has emerged with phylogenetic specificities of various kinds. In the plant kingdom, however, N-glycosylation appears as strictly conservative and uniform. From mosses to all kinds of gymno- and angiosperms, land plants mainly express structures with the common pentasaccharide core substituted with xylose, core α1,3-fucose, maybe terminal GlcNAc residues and Lewis A determinants. In contrast, green algae biosynthesize unique and unusual N-glycan structures with uncommon monosaccharides, a plethora of different structures and various kinds of O-methylation. Mosses, a group of plants that are separated by at least 400 million years of evolution from vascular plants, were hitherto seen as harbouring an N-glycosylation machinery identical to that of vascular plants. To challenge this view, we have analysed the N-glycomes of several moss species using MALDI-TOF/TOF, PGC-MS/MS and GC-MS. While all species contained the plant-typical heptasaccharide with no, one or two terminal GlcNAc residues (MMXF, MGnXF and GnGnXF, respectively), many species exhibited MS signals with 14.02 Da increments as characteristic for O-methylation. Throughout all analysed moss N-glycans the level of methylation differed strongly even in the same family. In some species, methylated glycans dominated, while others had no methylation at all. GC-MS revealed the main glycan from Funaria hygrometrica to contain 2,6-O-methylated terminal mannose. Some mosses additionally presented very large, likewise methylated complex-type N-glycans. This first finding of methylation of N-glycans in land plants mirrors the presumable phylogenetic relation of mosses to green algae, where O-methylation of mannose and many other monosaccharides is a common trait.


Author(s):  
Mari A. Piirainen ◽  
Heidi Salminen ◽  
Alexander D. Frey

Abstract N-glycosylation is an important posttranslational modification affecting the properties and quality of therapeutic proteins. Glycoengineering in yeast aims to produce proteins carrying human-compatible glycosylation, enabling the production of therapeutic proteins in yeasts. In this work, we demonstrate further development and characterization of a glycoengineering strategy in a Saccharomyces cerevisiae Δalg3 Δalg11 strain where a truncated Man3GlcNAc2 glycan precursor is formed due to a disrupted lipid-linked oligosaccharide synthesis pathway. We produced galactosylated complex-type and hybrid-like N-glycans by expressing a human galactosyltransferase fusion protein both with and without a UDP-glucose 4-epimerase domain from Schizosaccharomyces pombe. Our results showed that the presence of the UDP-glucose 4-epimerase domain was beneficial for the production of digalactosylated complex-type glycans also when extracellular galactose was supplied, suggesting that the positive impact of the UDP-glucose 4-epimerase domain on the galactosylation process can be linked to other processes than its catalytic activity. Moreover, optimization of the expression of human GlcNAc transferases I and II and supplementation of glucosamine in the growth medium increased the formation of galactosylated complex-type glycans. Additionally, we provide further characterization of the interfering mannosylation taking place in the glycoengineered yeast strain. Key points • Glycoengineered Saccharomyces cerevisiae can form galactosylated N-glycans. • Genetic constructs impact the activities of the expressed glycosyltransferases. • Growth medium supplementation increases formation of target N-glycan structure.


2021 ◽  
Vol 153 ◽  
pp. 111522
Author(s):  
Ömür Deveci ◽  
Sakine Hulku ◽  
Anthony G. Shannon

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Dongxia Wang ◽  
Bin Zhou ◽  
Theodore R. Keppel ◽  
Maria Solano ◽  
Jakub Baudys ◽  
...  

AbstractN-glycosylation plays an important role in the structure and function of membrane and secreted proteins. The spike protein on the surface of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus that causes COVID-19, is heavily glycosylated and the major target for developing vaccines, therapeutic drugs and diagnostic tests. The first major SARS-CoV-2 variant carries a D614G substitution in the spike (S-D614G) that has been associated with altered conformation, enhanced ACE2 binding, and increased infectivity and transmission. In this report, we used mass spectrometry techniques to characterize and compare the N-glycosylation of the wild type (S-614D) or variant (S-614G) SARS-CoV-2 spike glycoproteins prepared under identical conditions. The data showed that half of the N-glycosylation sequons changed their distribution of glycans in the S-614G variant. The S-614G variant showed a decrease in the relative abundance of complex-type glycans (up to 45%) and an increase in oligomannose glycans (up to 33%) on all altered sequons. These changes led to a reduction in the overall complexity of the total N-glycosylation profile. All the glycosylation sites with altered patterns were in the spike head while the glycosylation of three sites in the stalk remained unchanged between S-614G and S-614D proteins.


2021 ◽  
Vol 3 (3) ◽  
pp. 87-100
Author(s):  
J. M. Tlepieva ◽  
N. S. Shilanov

This paper discusses the boundary values of the reservoir properties of carbonate rocks of the Triassic sediments of South Mangyshlak, which are important for the interpretation of production geophysical data and for perforating and blasting operations. In terms of lithological composition, Triassic deposits are represented by two types of commercial reservoirs terrigenous and carbonate. Carbonate reservoirs are localized in the volcanic-dolomite and volcanic-limestone strata of the Middle Triassic. These rocks are characterized by a complex type of reservoir: porous-fractured, porous-cavernous and fractured. Sediments of the Upper Triassic occur with erosion on the Middle Triassic sedimentary complex and are represented by alternating tuffaceous, silt-sandy and mudstone rocks. Polymictic sandstones are oil-saturated to varying degrees; oil deposits are confined to them. To substantiate the quantitative criteria of the reservoir, the results obtained during special laboratory studies of the core were used. Filtration studies were carried out, where physical and hydrodynamic characteristics were determined when oil was displaced by displacing reagents. The obtained parameters were used to construct correlations collector non-collector. Using the relationships between the reservoir properties of the reservoir, the dependence of the porosity and permeability on the residual water content, as well as open porosity and permeability on the dynamic porosity, the boundary values were determined.


Sign in / Sign up

Export Citation Format

Share Document