skeleton formation
Recently Published Documents


TOTAL DOCUMENTS

99
(FIVE YEARS 15)

H-INDEX

25
(FIVE YEARS 4)

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Atsuko Yamazaki ◽  
Shumpei Yamakawa ◽  
Yoshiaki Morino ◽  
Yasunori Sasakura ◽  
Hiroshi Wada

AbstractThe larval skeleton of the echinoderm is believed to have been acquired through co-option of a pre-existing gene regulatory network (GRN); that is, the mechanism for adult skeleton formation in the echinoderm was deployed in early embryogenesis during echinoderm diversification. To explore the evolutionary changes that occurred during co-option, we examined the mechanism for adult skeletogenesis using the starfish Patiria pectinifera. Expression patterns of skeletogenesis-related genes (vegf, vegfr, ets1/2, erg, alx1, ca1, and clect) suggest that adult skeletogenic cells develop from the posterior coelom after the start of feeding. Treatment with inhibitors and gene knockout using transcription activator-like effector nucleases (TALENs) suggest that the feeding-nutrient sensing pathway activates Vegf signaling via target of rapamycin (TOR) activity, leading to the activation of skeletogenic regulatory genes in starfish. In the larval skeletogenesis of sea urchins, the homeobox gene pmar1 activates skeletogenic regulatory genes, but in starfish, localized expression of the pmar1-related genes phbA and phbB was not detected during the adult skeleton formation stage. Based on these data, we provide a model for the adult skeletogenic GRN in the echinoderm and propose that the upstream regulatory system changed from the feeding-TOR-Vegf pathway to a homeobox gene-system during co-option of the skeletogenic GRN.


2021 ◽  
Author(s):  
Jingqi Zhou ◽  
Ake Liu ◽  
Funan He ◽  
Yunbin Zhang ◽  
Libing Shen ◽  
...  

AbstractThe white-blotched river stingray (Potamotrygon leopoldi) is a cartilaginous fish native to the Xingu River, a tributary of the Amazon River system. It possesses a lot of unique biological features such as disc-like body shape, bizarre color pattern and living in freshwater habitat while most stingrays and their close relatives are sea dwellers. As a member of the Potamotrygonidae family, P. leopoldi bears evolutionary signification in fish phylogeny, niche adaptation and skeleton formation. In this study, we present its draft genome of 4.11 Gb comprised of 16,227 contigs and 13,238 scaffolds, which has contig N50 of 3,937 kilobases and scaffold N50 of 5,675 kilobases in size. Our analysis shows that P. leopoldi is a slow-evolving fish, diverged from elephant shark about 96 million years ago. We find that two gene families related to immune system, immunoglobulin heavy constant delta genes, and T-cell receptor alpha/delta variable genes, stand out expanded in P. leopoldi only, suggesting robustness in response to freshwater pathogens in adapting novel environments. We also identified the Hox gene clusters in P. leopoldi and discovered that seven Hox genes shared by five representative fishes are missing in P. leopoldi. The RNA-seq data from P. leopoldi and other three fish species demonstrate that fishes have a more diversified tissue expression spectrum as compared to the corresponding mammalian data. Our functional studies suggest that the lack of genes encoding vitamin D-binding protein in cartilaginous (both P. leopoldi and Callorhinchus milii) fishes could partly explain the absence of hard bone in their endoskeleton. Overall, this genome resource provides new insights into the niche-adaptation, body plan and skeleton formation of P. leopoldi as well as the genome evolution in cartilaginous fish.


Development ◽  
2021 ◽  
Author(s):  
Anna Czarkwiani ◽  
David V. Dylus ◽  
Luisana Carballo ◽  
Paola Oliveri

Regeneration as an adult developmental process is in many aspects similar to embryonic development. Although many studies point out similarities and differences, no large-scale, direct and functional comparative analyses between development and regeneration of a specific cell type or structure in one animal exist. Here, we use the brittle star Amphiura filiformis to characterise the role of the FGF signalling pathway during skeletal development in embryos and arm regeneration. In both processes, we find ligands expressed in ectodermal cells flanking underlying skeletal mesenchymal cells, which express the receptors. Perturbation of FGF signalling showed inhibited skeleton formation in both embryogenesis and regeneration, without affecting other key developmental processes. Differential transcriptome analysis finds mostly differentiation genes rather than transcription factors to be downregulated in both contexts. Moreover, comparative gene analysis allowed us to discover brittle star specific, differentiation genes. In conclusion, our results show that the FGF pathway is crucial for skeletogenesis in the brittle star, as in other deuterostomes and provide evidence for the re-deployment of a developmental gene regulatory module during regeneration.


2021 ◽  
Vol 12 ◽  
Author(s):  
Zhixu Liu ◽  
Hao Sun ◽  
Jiewen Dai ◽  
Xiaochen Xue ◽  
Jian Sun ◽  
...  

Hemifacial microsomia (HM) is a craniofacial congenital defect involving the first and second branchial arch, mainly characterized by ocular, ear, maxilla-zygoma complex, mandible, and facial nerve malformation. HM follows autosomal dominant inheritance. Whole-exome sequencing of a family revealed a missense mutation in a highly conserved domain of ITPR1. ITPR1 is a calcium ion channel. By studying ITPR1’s expression pattern, we found that ITPR1 participated in craniofacial development, especially the organs that corresponded to the phenotype of HM. In zebrafish, itpr1b, which is homologous to human ITPR1, is closely related to craniofacial bone formation. The knocking down of itpr1b in zebrafish could lead to a remarkable decrease in craniofacial skeleton formation. qRT-PCR suggested that knockdown of itpr1b could increase the expression of plcb4 while decreasing the mRNA level of Dlx5/6. Our findings highlighted ITPR1’s role in craniofacial formation for the first time and suggested that ITPR1 mutation contributes to human HM.


2020 ◽  
Author(s):  
Aleksandr Bekshaev ◽  
Aleksey Chernykh ◽  
Anna Khoroshun ◽  
Jan Masajada ◽  
Agnieszka Popiołek-Masajada ◽  
...  

2019 ◽  
Vol 5 (10) ◽  
pp. eaaw3896 ◽  
Author(s):  
Rui Li ◽  
Sien Lin ◽  
Meiling Zhu ◽  
Yingrui Deng ◽  
Xiaoyu Chen ◽  
...  

Noncanonical Wnt signaling in stem cells is essential to numerous developmental events. However, no prior studies have capitalized on the osteoinductive potential of noncanonical Wnt ligands to functionalize biomaterials in enhancing the osteogenesis and associated skeleton formation. Here, we investigated the efficacy of the functionalization of biomaterials with a synthetic Wnt5a mimetic ligand (Foxy5 peptide) to promote the mechanosensing and osteogenesis of human mesenchymal stem cells by activating noncanonical Wnt signaling. Our findings showed that the immobilized Wnt5a mimetic ligand activated noncanonical Wnt signaling via the up-regulation of Disheveled 2 and downstream RhoA-ROCK signaling, leading to enhanced intracellular calcium level, F-actin stability, actomyosin contractility, and cell adhesion structure development. This enhanced mechanotransduction in stem cells promoted the in vitro osteogenic lineage commitment and the in vivo healing of rat calvarial defects. Our work provides valuable guidance for the developmentally inspired design of biomaterials for a wide array of therapeutic applications.


2019 ◽  
Vol 116 (30) ◽  
pp. 15068-15073 ◽  
Author(s):  
Meng Xie ◽  
Dmitrii Kamenev ◽  
Marketa Kaucka ◽  
Maria Eleni Kastriti ◽  
Baoyi Zhou ◽  
...  

Immature multipotent embryonic peripheral glial cells, the Schwann cell precursors (SCPs), differentiate into melanocytes, parasympathetic neurons, chromaffin cells, and dental mesenchymal populations. Here, genetic lineage tracing revealed that, during murine embryonic development, some SCPs detach from nerve fibers to become mesenchymal cells, which differentiate further into chondrocytes and mature osteocytes. This occurred only during embryonic development, producing numerous craniofacial and trunk skeletal elements, without contributing to development of the appendicular skeleton. Formation of chondrocytes from SCPs also occurred in zebrafish, indicating evolutionary conservation. Our findings reveal multipotency of SCPs, providing a developmental link between the nervous system and skeleton.


Author(s):  
N.V. Solov’eva ◽  
E.V. Makarova ◽  
V.B. Vil’yanov ◽  
S.A. Kremenitskaya ◽  
S.V. Chausova ◽  
...  

2019 ◽  
Vol 21 (2) ◽  
pp. 291-300 ◽  
Author(s):  
Mariko Iijima ◽  
Ko Yasumoto ◽  
Jun Yasumoto ◽  
Mina Yasumoto-Hirose ◽  
Nami Kuniya ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document