Cardiac extracorporeal life support: state of the art in 2007

2007 ◽  
Vol 17 (S4) ◽  
pp. 104-115 ◽  
Author(s):  
David S. Cooper ◽  
Jeffrey P. Jacobs ◽  
Lisa Moore ◽  
Arabela Stock ◽  
J. William Gaynor ◽  
...  

AbstractMechanical circulatory support is an invaluable tool in the care of children with severe refractory cardiac and or pulmonary failure. Two forms of mechanical circulatory support are currently available to neonates, infants, and smaller children, namely extracorporeal membrane oxygenation and use of a ventricular assist device, with each technique having unique advantages and disadvantages. The intra-aortic balloon pump is a third form of mechanical support that has been successfully used in larger children, adolescents, and adults, but has limited applicability in smaller children. In this review, we discuss the current experiences with extracorporeal membrane oxygenation and ventricular assist devices in children with cardiac disease.A variety of forms of mechanical circulatory support are available for children with cardiopulmonary dysfunction refractory to conventional management. These devices require extensive resources, both human and economic. Extracorporeal membrane oxygenation can be effectively used in a variety of settings to provide support to critically-ill patients with cardiac disease. Careful selection of patients and timing of intervention remains challenging. Special consideration should be given to children with cardiac disease with regard to anatomy, physiology, cannulation, and circuit management. Even though exciting progress is being made in the development of ventricular assist devices for long-term mechanical support in children, extracorporeal membrane oxygenation remains the mainstay of mechanical circulatory support in children with complex anatomy, particularly those needing rapid resuscitation and those with a functionally univentricular circulation.As the familiarity and experience with extracorporeal membrane oxygenation has grown, new indications have evolved, including emergent resuscitation. This utilization has been termed extracorporeal cardiopulmonary resuscitation. The literature supporting emergent cardiopulmonary support is mounting. Reasonable survival rates have been achieved after initiation of support during active compressions of the chest following in-hospital cardiac arrest. Due to the limitations of conventional circuits for extracorporeal membrane oxygenation, some centres have developed novel systems for rapid cardiopulmonary support.Many centres previously considered a functionally univentricular circulation to be a contraindication to extracorporeal membrane oxygenation, but improved results have been achieved recently with this complex subset of patients. The registry of the Extracorporeal Life Support Organization recently reported the outcome of extracorporeal life support used in neonates for cardiac indications from 1996 to 2000. Of the 740 neonates who were placed on extracorporeal life support for cardiac indications, 118 had hypoplastic left heart syndrome. There was no significant difference in survival between these patients and those with other defects. It is now common to use extracorporeal membrane oxygenation to support patients with a functionally univentricular circulation, and reasonable survival rates are to be expected.Although extracorporeal membrane oxygenation has become a standard of care for many paediatric centres, its use is limited to those patients who require only short-term cardiopulmonary support. Mechanical ventricular assist devices have become standard therapy for adults with cardiac failure refractory to maximal medical management. Several devices are readily available in the United States of America for adults, but there are fewer options available to children. Over the last few years, substantial progress has been made in paediatric mechanical support. Ventricular assist devices are being used with increasing frequency in children with cardiac failure refractory to medical therapy for primary treatment as a long-term bridge to recovery or transplantation. The paracorporeal, pneumatic, pulsatile “Berlin Heart” ventricular assist device is being used with increasing frequency in Europe and North America to provide univentricular and biventricular support. With this device, a patient can be maintained on mechanical circulatory support while extubated, being mobilized, and feeding by mouth.Mechanical circulatory support should be anticipated, and every attempt must be made to initiate support “urgently” rather than “emergently”, before the presence of dysfunction of end organs or circulatory collapse. In an emergency, these patients can be resuscitated with extracorporeal membrane oxygenation and subsequently transitioned to a long-term ventricular assist device after a period of stability.

2018 ◽  
Vol 28 (9) ◽  
pp. 1082-1090 ◽  
Author(s):  
Jennifer Sherwin ◽  
Elizabeth Thompson ◽  
Kevin D. Hill ◽  
Kevin Watt ◽  
Andrew J. Lodge ◽  
...  

AbstractThe ventricular assist device is being increasingly used as a “bridge-to-transplant” option in children with heart failure who have failed medical management. Care for this medically complex population must be optimised, including through concomitant pharmacotherapy. Pharmacokinetic/pharmacodynamic alterations affecting pharmacotherapy are increasingly discovered in children supported with extracorporeal membrane oxygenation, another form of mechanical circulatory support. Similarities between extracorporeal membrane oxygenation and ventricular assist devices support the hypothesis that similar alterations may exist in ventricular assist device-supported patients. We conducted a literature review to assess the current data available on pharmacokinetics/pharmacodynamics in children with ventricular assist devices. We found two adult and no paediatric pharmacokinetic/pharmacodynamic studies in ventricular assist device-supported patients. While mechanisms may be partially extrapolated from children supported with extracorporeal membrane oxygenation, dedicated investigation of the paediatric ventricular assist device population is crucial given the inherent differences between the two forms of mechanical circulatory support, and pathophysiology that is unique to these patients. Commonly used drugs such as anticoagulants and antibiotics have narrow therapeutic windows with devastating consequences if under-dosed or over-dosed. Clinical studies are urgently needed to improve outcomes and maximise the potential of ventricular assist devices in this vulnerable population.


2014 ◽  
Vol 8s1 ◽  
pp. CMC.S15718 ◽  
Author(s):  
Nisha A. Gilotra ◽  
Gerin R. Stevens

Cardiogenic shock remains a challenging disease entity and is associated with significant morbidity and mortality. Temporary mechanical circulatory support (MCS) can be implemented in an acute setting to stabilize acutely ill patients with cardiomyopathy in a variety of clinical situations. Currently, several options exist for temporary MCS. We review the indications, contraindications, clinical applications, and evidences for a variety of temporary circulatory support options, including the intra-aortic balloon pump (IABP), extracorporeal membrane oxygenation (ECMO), CentriMag blood pump, and percutaneous ventricular assist devices (pVADs), specifically the TandemHeart and Impella.


2021 ◽  
Vol 32 (4) ◽  
pp. 424-433
Author(s):  
Emalie Petersen

Heart failure is a leading cause of morbidity and mortality in the United States. Treatment of this condition increasingly involves mechanical circulatory support devices. Even with optimal medical therapy and use of simple cardiac devices, heart failure often leads to reduced quality of life and a shortened life span, prompting exploration of more advanced treatment approaches. Left ventricular assist devices constitute an effective alternative to cardiac transplantation. These devices are not without complications, however, and their use requires careful cooperative management by the patient’s cardiology team and primary care provider. Left ventricular assist devices have undergone many technological advancements since they were first introduced, and they will continue to evolve. This article reviews the history of different types of left ventricular assist devices, appropriate patient selection, and common complications in order to increase health professionals’ familiarity with these treatment options.


Sign in / Sign up

Export Citation Format

Share Document