Extracorporeal life support with an integrated left ventricular vent in children with a low cardiac output

2013 ◽  
Vol 24 (4) ◽  
pp. 654-660 ◽  
Author(s):  
Stany Sandrio ◽  
Wolfgang Springer ◽  
Matthias Karck ◽  
Matthias Gorenflo ◽  
Alexander Weymann ◽  
...  

AbstractBackground: The aim of this study was to evaluate our experience in central extracorporeal life support with an integrated left ventricular vent in children with cardiac failure. Methods: Eight children acquired extracorporeal life support with a left ventricular vent, either after cardiac surgery (n = 4) or during an acute cardiac illness (n = 4). The ascending aorta and right atrium were cannulated. The left ventricular vent was inserted through the right superior pulmonary vein and connected to the venous line on the extracorporeal life support such that active left heart decompression was achieved. Results: No patient died while on support, seven patients were successfully weaned from it and one patient was transitioned to a biventricular assist device. The median length of support was 6 days (range 5–10 days). One patient died while in the hospital, despite successful weaning from extracorporeal life support. No intra-cardiac thrombus or embolic stroke was observed. No patient developed relevant intracranial bleeding resulting in neurological dysfunction during and after extracorporeal life support. Conclusions: In case of a low cardiac output and an insufficient inter-atrial shunt, additional left ventricular decompression via a vent could help avoid left heart distension and might promote myocardial recovery. In pulmonary dysfunction, separate blood gas analyses from the venous cannula and the left ventricular vent help detect possible coronary hypoxia when the left ventricle begins to recover. We recommend the use of central extracorporeal life support with an integrated left ventricular vent in children with intractable cardiac failure.

2014 ◽  
Vol 147 (1) ◽  
pp. 283-289 ◽  
Author(s):  
Sung Jun Park ◽  
Joon Bum Kim ◽  
Sung-Ho Jung ◽  
Suk Jung Choo ◽  
Cheol Hyun Chung ◽  
...  

2018 ◽  
Vol 41 (8) ◽  
pp. 437-444 ◽  
Author(s):  
Sabina PW Guenther ◽  
Yasuhiro Shudo ◽  
William Hiesinger ◽  
Dipanjan Banerjee

Objectives: In intractable cardiogenic shock, extracorporeal life support frequently is the last treatment option. Outcomes of prolonged veno-arterial extracorporeal life support for cardiac failure are poorly defined. Methods: We retrospectively analyzed 10 patients (4 females, age = 36 ± 16 years) who underwent prolonged extracorporeal life support (≥7 days) from December 2015 to March 2017 for cardiogenic shock. The primary endpoint was survival to hospital discharge. Results: Etiologies included ischemic cardiomyopathy with non ST-segment elevation myocardial infarction (n = 1), dilated (n = 3), hypertrophic (n = 1), postpartum cardiomyopathy (n = 1), and others (n = 4). Heart failure was left or biventricular in 80.0% (left ventricular ejection fraction = 15.6 ± 5.5%). Among the 10 patients, 80.0% underwent femoral and 20.0% central cannulation, 40.0% required changes in the cannulation strategy, and 80.0% underwent left ventricular venting. No technical malfunctions occurred, but 50.0% required circuit exchanges for thrombus formation. 80.0% suffered from infections. 60.0% could be decannulated after 717 ± 830 (168–2301) h of support, and survival to hospital discharge was 40.0%. Longest follow-up available is 160 ± 175 (12–409) days after discharge, with 30.0% alive and in satisfying functional condition. Conclusion: Prolonged veno-arterial extracorporeal life support for cardiac failure is feasible with low technical complication rates. Survival rates are acceptable, yet inferior to short-term support. We observed a shift from initial shock-related complications to infections during prolonged support. Since recovery and thus weaning is rather unlikely after a prolonged need for extracorporeal life support, this form of support should be limited to centers offering the full spectrum of interdisciplinary cardiac care including ventricular assist device implantation and transplantation.


Perfusion ◽  
2016 ◽  
Vol 32 (2) ◽  
pp. 151-156 ◽  
Author(s):  
Katherine Cashen ◽  
Roland L Chu ◽  
Justin Klein ◽  
Peter T Rycus ◽  
John M Costello

Introduction: Pediatric patients with hemophagocytic lymphohistiocytosis (HLH) may develop refractory respiratory or cardiac failure that warrants consideration for extracorporeal membrane oxygenation (ECMO) support. The purposes of this study were to describe the use and outcomes of ECMO in pediatric HLH patients, to identify risk factors for hospital mortality and to compare their ECMO use and outcomes to the ECMO population as a whole. Methods: Pediatric patients (⩽ 18 years) with a diagnosis of HLH in the Extracorporeal Life Support Organization (ELSO) Registry were included. Results: Between 1983 and 2014, data for 30 children with HLH were available in the ELSO registry and all were included in this study. All cases occurred in the last decade. Of the 30 HLH patients, 24 (80%) had a respiratory indication for ECMO and six (20%) had a cardiac indication (of which 4 were E-CPR and 2 cardiac failure). Of the 24 respiratory ECMO patients, 63% were placed on VA ECMO. Compared with all pediatric patients in the ELSO registry during the study period (n=17,007), HLH patients had worse hospital survival (non-HLH 59% vs HLH 30%, p=0.001). In pediatric HLH patients, no pre-ECMO risk factors for mortality were identified. The development of a hemorrhagic complication on ECMO was associated with decreased mortality (p=0.01). Comparing HLH patients with respiratory failure to patients with other immune compromised conditions, the overall survival rate is similar (HLH 38% vs. non-HLH immune compromised 31%, p=0.64). Conclusions: HLH is an uncommon indication for ECMO and these patients have increased mortality compared to the overall pediatric ECMO population. These data should be factored into decision-making when considering ECMO for pediatric HLH patients.


2021 ◽  
Vol 10 (Supplement_1) ◽  
Author(s):  
SKT Ma ◽  
WC Sin ◽  
CW Ngai ◽  
ASK Wong ◽  
WM Chan ◽  
...  

Abstract Funding Acknowledgements Type of funding sources: None. Background Veno-arterial extracorporeal membrane oxygenation (V-A ECMO) is an advanced technique in extracorporeal life support (ECLS) used to support extreme circulatory failure including patients with cardiac arrest and cardiogenic shock refractory to conventional support. It is a long-standing belief that peripheral V-A ECMO poses increased afterload to the inured heart, but conventional echocardiographic measurements are often insensitive in detecting subtle changes in loading conditions. Purpose This study aimed to evaluate the effects of varying blood flow during peripheral V-A ECMO on intrinsic myocardial contractility, using detailed echocardiographic assessment including speckle tracking echocardiography (STE). Methods Adult patients with acute cardiogenic shock who were supported by peripheral V-A ECMO from April 2019 to September 2020 were recruited. Serial hemodynamic and cardiac performance parameters were measured by transthoracic echocardiogram (TTE) within 48 hours after implementation of V-A ECMO, at different levels of extracorporeal blood flow – 100%, 120% and 50% of target blood flow (TBF). Results A total of 30 patients were included. 22 (71%) were male, and the mean (SD) age was 54 (13) years. The major indications for V-A ECMO were myocardial infarction (19, 63% patients), and myocarditis (5, 17%). With a decrease in extracorporeal blood flow from 100% to 50% of TBF, mean arterial pressure (MAP) dropped from 76+/-3 to 64+/-3mmHg (p <0.001), and cardiac index (CI) increased from 0.89+/-0.13 to 1.27+/-0.18L/min/m2 (p < 0.001). All indices of left ventricular contractility improved at a lower extracorporeal blood flow: the myocardial contractility measured by global longitudinal peak systolic strain (GLPSS) improved from -3+/-0.7% to -5+/-0.8% (p < 0.001); left ventricular ejection fraction (LVEF) increased from 21.5+/-2.6% to 30.9+/-2.7% (p < 0.001) and 19.7+/-3.1% to 28.4+/-3.2% (p < 0.001) by biplane and linear methods, respectively; left ventricular index of myocardial performance (LIMP) improved from 1.51+/-0.12 to 1.03+/-0.09 (p < 0.001). Similar findings were reproduced when comparing left ventricular contractility at extracorporeal blood flows of 120% and 50% of TBF. Conclusions The ECMO blood flow rate in peripheral V-A ECMO is inversely related to myocardial contractility, and is quantifiable by myocardial strain measured by STE.


Sign in / Sign up

Export Citation Format

Share Document