Pathophysiology of Basal Ganglia Disorders

CNS Spectrums ◽  
1998 ◽  
Vol 3 (2) ◽  
pp. 36-40 ◽  
Author(s):  
Jau-Shin Lou

AbstractParkinson's disease is the most common basal ganglia disorder that is caused by the degeneration of dopaminergic neurons in the substantia nigra. This article reviews the normal physiology of the basal ganglia in the normal state, as well as the pathophysiology of Parkinson's disease (PD) and other movement disorders associated with the basal ganglia. Also discussed is the pathophysiological basis for the surgical treatment of PD.

2020 ◽  
Author(s):  
Shahan Mamoor

Parkinson’s Disease (PD) is characterized by loss of dopaminergic neurons in the substantia nigra of the basal ganglia (1). We mined published microarray datasets (2, 3) to identify genes whose expression was most different in the substantial nigra of patients with PD as compared to that of non-affected patients. We identified significant changes in expression of the gene encoding autophagin-3 (ATG4C) in the substantia nigra of patients with PD.


2020 ◽  
Author(s):  
Shahan Mamoor

Parkinson’s Disease (PD) is characterized by loss of dopaminergic neurons in the substantia nigra of the basal ganglia (1). We mined published and public microarray datasets (2, 3) to identify genes whose expression was most different in the substantial nigra of patients with PD as compared to that of non-affected patients. We identified significant changes in expression of the gene encoding the long intergenic non-coding RNA LINC00643 in the substantia nigra of patients with PD.


2020 ◽  
Author(s):  
Shahan Mamoor

Parkinson’s Disease (PD) is characterized by loss of dopaminergic neurons in the substantia nigra of the basal ganglia (1). We mined published and public microarray (2, 3) datasets to identify genes whose expression was most different in the brains of patients with PD as compared to that of non-affected patients. We identified significant changes in expression of the gene encoding the cyclin-dependent kinase CDK6 in the substantia nigra of patients with PD.


2020 ◽  
Author(s):  
Shahan Mamoor

Parkinson’s Disease (PD) is characterized by loss of dopaminergic neurons in the substantia nigra of the basal ganglia (1). We mined published and public microarray (2, 3) datasets to identify genes whose expression was most different in the brains of patients with PD as compared to that of non-affected patients. We identified significant changes in expression of the gene encoding the transcription factor ID2 in the substantia nigra of patients with PD.


2020 ◽  
Author(s):  
Shahan Mamoor

Parkinson’s Disease (PD) is characterized by loss of dopaminergic neurons in the substantia nigra of the basal ganglia (1). We mined published and public microarray datasets (2, 3, 4) to identify genes whose expression was most different in the substantial nigra of patients with PD as compared to that of non-affected patients. We identified significant changes in expression of open reading frame 18 on chromosome 54 (C18ORF54) in the substantia nigra of patients with PD.


2020 ◽  
Author(s):  
Shahan Mamoor

Parkinson’s Disease (PD) is characterized by loss of dopaminergic neurons in the substantia nigra of the basal ganglia (1). We mined published microarray datasets (2, 3) to identify genes whose expression was most different in the substantial nigra of patients with PD as compared to that of non-affected patients. We identified significant changes in expression of the gene encoding ANK1 in the substantia nigra of patients with PD.


2020 ◽  
Author(s):  
Shahan Mamoor

Parkinson’s Disease (PD) is characterized by loss of dopaminergic neurons in the substantia nigra of the basal ganglia (1). We mined published microarray datasets (2, 3, 4) to identify genes whose expression was most different in the brains of patients with PD as compared to that of non-affected patients. We identified significant changes in expression of the gene encoding the histone lysine N-methyltransferase KMT5B in the substantia nigra of patients with PD.


2020 ◽  
Author(s):  
Shahan Mamoor

Parkinson’s Disease (PD) is characterized by loss of dopaminergic neurons in the substantia nigra of the basal ganglia (1). We mined published microarray datasets (2, 3, 4) to identify genes whose expression was most different in the brains of patients with PD as compared to that of non-affected patients. We identified significant changes in expression of the gene encoding KMT2A (also known as MLL1) in the substantia nigra of patients with PD.


2017 ◽  
Vol 55 (1) ◽  
pp. 804-821 ◽  
Author(s):  
Debashis Dutta ◽  
Nilufar Ali ◽  
Emili Banerjee ◽  
Raghavendra Singh ◽  
Amit Naskar ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document