Low Levels of Prohibitin in Substantia Nigra Makes Dopaminergic Neurons Vulnerable in Parkinson’s Disease

2017 ◽  
Vol 55 (1) ◽  
pp. 804-821 ◽  
Author(s):  
Debashis Dutta ◽  
Nilufar Ali ◽  
Emili Banerjee ◽  
Raghavendra Singh ◽  
Amit Naskar ◽  
...  
Author(s):  
Vaibhav Walia ◽  
Ashish Gakkhar ◽  
Munish Garg

Parkinson's disease (PD) is a neurodegenerative disorder in which a progressive loss of the dopaminergic neurons occurs. The loss of the neurons is most prominent in the substantia nigra region of the brain. The prevalence of PD is much greater among the older patients suggesting the risk of PD increases with the increase of age. The exact cause of the neurodegeneration in PD is not known. In this chapter, the authors introduce PD, demonstrate its history, pathogenesis, neurobiology, sign and symptoms, diagnosis, and pharmacotherapy.


1998 ◽  
Vol 17 (5) ◽  
pp. 283-293 ◽  
Author(s):  
Peter Juergen Kramer ◽  
John Caldwell ◽  
Andreas Hofmann ◽  
Peter Tempel ◽  
Guenter Weisse

1-Methyl-4-phenyl-1,2,3,6 tetrahydropyridine (MPTP) induces symptoms indistinguishable from those of Parkinson's disease. It selectively destroys dopaminergic neurons in the substantia nigra and the globus pallidus. Death of these same neurons is apparently the cause of idiopathic Parkinson's disease. As phenyl-1,2,3,6 tetrahydropyridine is a commonly encountered subunit in heterocyclic drugs and because MPTP was found as a minor impurity in early batches of a candidate drug at Merck KGaA, it may be assumed that MPTP will also be present as an as yet undiscovered minor impurity in various existing drugs. A neurotoxicity risk assessment on MPTP has been conducted to define the risk of MPTP as an impurity in drugs that are used orally. This risk assessment has shown that compounds containing less than 5.0 p.p.m. MPTP administered orally will not cause a neurotoxicological health risk to patients treated with such a drug.


2017 ◽  
Vol 8 (9) ◽  
pp. 3033-3042 ◽  
Author(s):  
Pamela Maher

Parkinson's disease (PD) is an age-associated degenerative disease of the midbrain that results from the loss of dopaminergic neurons in the substantia nigra.


2020 ◽  
Author(s):  
Shahan Mamoor

Parkinson’s Disease (PD) is characterized by loss of dopaminergic neurons in the substantia nigra of the basal ganglia (1). We mined published microarray datasets (2, 3) to identify genes whose expression was most different in the substantial nigra of patients with PD as compared to that of non-affected patients. We identified significant changes in expression of the gene encoding autophagin-3 (ATG4C) in the substantia nigra of patients with PD.


2020 ◽  
Vol 8 (1) ◽  
pp. 47-65
Author(s):  
Falaq Naz ◽  
Yasir Hasan Siddique

Parkinson’s Disease (PD) is a complex neurodegenerative disorder that mainly results due to the loss of dopaminergic neurons in the substantia nigra of the midbrain. It is well known that dopamine is synthesized in substantia nigra and is transported to the striatum via nigrostriatal tract. Besides the sporadic forms of PD, there are also familial cases of PD and number of genes (both autosomal dominant as well as recessive) are responsible for PD. There is no permanent cure for PD and to date, L-dopa therapy is considered to be the best option besides having dopamine agonists. In the present review, we have described the genes responsible for PD, the role of dopamine, and treatment strategies adopted for controlling the progression of PD in humans.


2022 ◽  
Author(s):  
Min Hyung Seo ◽  
Sujung Yeo

Abstract Parkinson’s disease (PD) is known as the second most common neurodegenerative disease, which is caused by destruction of dopaminergic neurons in the substantia nigra (SN) of the brain; however, the reason for the death of dopaminergic neurons remains unclear. An increase in α-synuclein (α-syn) is considered an important factor in the pathogenesis of PD. In the current study, we investigated the association between PD and serine/arginine-rich protein specific kinase 3 (Srpk3) in MPTP-induced parkinsonism mice model and in SH-SY5Y cells treated with MPP+. Srpk3 expression was significantly downregulated, while tyrosine hydroxylase (TH) decreased and α-synuclein (α-syn) increased after 4 weeks of MPTP intoxication treatment. Dopaminergic cell reduction and α-syn increase were demonstrated by inhibiting Srpk3 expression by siRNA in SH-SY5Y cells. Moreover, a decrease in Srpk3 expression upon siRNA treatment promoted dopaminergic cell reduction and α-syn increase in SH-SY5Y cells treated with MPP+. These results suggest that the decrease in Srpk3 expression due to Srpk3 siRNA caused both a decrease in TH and an increase in α-syn. This raises new possibilities for studying how Srpk3 controls dopaminergic cells and α-syn expression, which may be related to the pathogenesis of PD. Our results provide an avenue for understanding the role of Srpk3 during dopaminergic cell loss and α-syn increase in the SN. Furthermore, this study could support a therapeutic possibility for PD in that the maintenance of Srpk3 expression inhibited dopaminergic cell reduction.


Sign in / Sign up

Export Citation Format

Share Document