CO Emission vs HI Self-Absorption

1983 ◽  
Vol 5 (2) ◽  
pp. 224-227 ◽  
Author(s):  
William L. Peters ◽  
Frank N. Bash

We present the initial results of a statistical comparison of CO emission and H I self-absorption in the galactic plane at large distances from the Sun. Evidence for self-absorption by cold atomic hydrogen (Ts < 60 K) over angular scales of 3 ´-20´ was reported by Baker and Burton (1979). They suggested that this hydrogen was associated with the molecular clouds of the ‘molecular ring’ located between 4 and 8 kpc from the galactic center (Burton and Gordon 1978). Burton, Lizst, and Baker (1978) did find a correspondence between CO emission and H I self-absorption; however, their observations were not extensive enough to prove that the correspondence was statistically significant or to test their prediction that all instances of H I self-absorption are accompanied by CO emission and thus associated with molecular clouds.

1980 ◽  
Vol 87 ◽  
pp. 397-404 ◽  
Author(s):  
Arno A. Penzias

While an examination of the available data reveals some seemingly contradictory results, a general framework having the following outlines can be put forward:1. With the exception of the two galactic center sources SgrA and SgrB, the relative isotopic abundances exhibited by the giant molecular clouds in our Galaxy exhibit few, if any, significant variations from the values obtained by averaging the data from all these sources.2. The 13C/12C and 14N/15N abundance ratios are ∼130% and ∼150%, respectively, of their terrestrial values throughout the galactic plane and somewhat higher, ∼300%, near the galactic center.3. The 16O/18O and 17O/18O abundance ratios are ∼130% and ∼160%, respectively, of their terrestrial values throughout the Galaxy, although the former may be somewhat lower near the galactic center.4. The S and Si isotopes have generally terrestrial abundances.


1989 ◽  
Vol 136 ◽  
pp. 157-158 ◽  
Author(s):  
J. G. Stacy ◽  
M. E. Bitran ◽  
T. M. Dame ◽  
P. Thaddeus

The discrepancy between observed and predicted γ-ray emission toward the Galactic Center is attributed to a unique population of wide-line molecular clouds. The most prominent objects of this class show evidence of rotation and a significant stellar population. The observed 12CO emission traces the gravitational field produced primarily by stars, not molecular gas.


2019 ◽  
Vol 630 ◽  
pp. A74 ◽  
Author(s):  
A. Mangilli ◽  
J. Aumont ◽  
J.-Ph. Bernard ◽  
A. Buzzelli ◽  
G. de Gasperis ◽  
...  

We present the first far infrared (FIR) dust emission polarization map covering the full extent of Milky Way’s central molecular zone (CMZ). The data, obtained with the PILOT balloon-borne experiment, covers the Galactic center region − 2° < ℓ < 2°, − 4° < b < 3° at a wavelength of 240 μm and an angular resolution of 2.2′. From our measured dust polarization angles, we infer a magnetic field orientation projected onto the plane of the sky (POS) that is remarkably ordered over the full extent of the CMZ, with an average tilt angle of ≃22° clockwise with respect to the Galactic plane. Our results confirm previous claims that the field traced by dust polarized emission is oriented nearly orthogonally to the field traced by GHz radio synchrotron emission in the Galactic center region. The observed field structure is globally compatible with the latest Planck polarization data at 353 and 217 GHz. Upon subtraction of the extended emission in our data, the mean field orientation that we obtain shows good agreement with the mean field orientation measured at higher angular resolution by the JCMT within the 20 and 50 km s−1 molecular clouds. We find no evidence that the magnetic field orientation is related to the 100 pc twisted ring structure within the CMZ. The low polarization fraction in the Galactic center region measured with Planck at 353 GHz combined with a highly ordered projected field orientation is unusual. This feature actually extends to the whole inner Galactic plane. We propose that it could be caused by the increased number of turbulent cells for the long lines of sight towards the inner Galactic plane or to dust properties specific to the inner regions of the Galaxy. Assuming equipartition between magnetic pressure and ram pressure, we obtain magnetic field strength estimates of the order of 1 mG for several CMZ molecular clouds.


1997 ◽  
Vol 166 ◽  
pp. 195-198
Author(s):  
R. Génova ◽  
J. E. Beckman ◽  
J. Rodríguez Álamo

AbstractObservations of interstellar Na I in the spectra of 93 stars within 315 pc from the Sun show that it lies in a tunnel of gas moving away from Scorpio-Centaurus and is surrounded by gas moving toward the Galactic center.Gas approaches the Sun from Scorpio-Centaurus expanding from (r, l, b)=(160 pc, 313°7, +28°2) with LSR velocity 15.3 km s−1. The radius of this shell is 153 pc.We identify these clouds:D: velocity vector (υd, ld, bd)=(+7.2 km s−1, 305°1, −13°5), above and below the Galactic plane (GP) in the range of Galactic longitudes 357°–55°.C: velocity vector (υc, lc, bc)=(+11.5 km s−1, 349°0, −35°2), above and below the GP in the range 30°≤l≤110°.M: velocity vector (υm, lm, bm)=(+21.9 km s−1, 34°2, +1°5), above and below the GP in the range 100°≤l≤130°.P: velocity vector (υp, lp, bp)=(+13.8 km s−1, 244°9, +5°4), above and below the GP from l~120° to the limit of our data at l~210°.E: velocity vector (υe, le, be)=(+16.8 km s−1, 208°4, +6°2) in the range 160°≤l≤185° and −10°≤b≤–35°.A: velocity vector (υa, la, ba)=(+12.9 km s−1, 73°6, −5°6) towards the Galactic anti-center, below the GP.I: velocity vector (υi, li, bi)=(+37.7 km s−1, 132°8, −64°3) towards the Galactic anti-center, above the GP.


Nature ◽  
1985 ◽  
Vol 314 (6006) ◽  
pp. 73-75 ◽  
Author(s):  
Patrick Thaddeus ◽  
Gary A. Chanan

2018 ◽  
Vol 619 ◽  
pp. A50 ◽  
Author(s):  
P. Grosbøl ◽  
G. Carraro

Context. The location of young sources in the Galaxy suggests a four-armed spiral structure, whereas tangential points of spiral arms observed in the integrated light at infrared and radio wavelengths indicate that only two arms are massive. Aims. Variable extinction in the Galactic plane and high light-to-mass ratios of young sources make it difficult to judge the total mass associated with the arms outlined by such tracers. The current objective is to estimate the mass associated with the Sagittarius arm by means of the kinematics of the stars across it. Methods. Spectra of 1726 candidate B- and A-type stars within 3◦ of the Galactic center (GC) were obtained with the FLAMES instrument at the VLT with a resolution of ≈6000 in the spectral range of 396–457 nm. Radial velocities were derived by least-squares fits of the spectra to synthetic ones. The final sample was limited to 1507 stars with either Gaia DR2 parallaxes or main-sequence B-type stars having reliable spectroscopic distances. Results. The solar peculiar motion in the direction of the GC relative to the local standard of rest (LSR) was estimated to U⊙ = 10.7 ± 1.3kms−1. The variation in the median radial velocity relative to the LSR as a function of distance from the sun shows a gradual increase from slightly negative values near the sun to almost 5 km s−1 at a distance of around 4 kpc. A sinusoidal function with an amplitude of 3.4 ± 1.3kms−1 and a maximum at 4.0 ± 0.6 kpc inside the sun is the best fit to the data. A positive median radial velocity relative to the LSR around 1.8 kpc, the expected distance to the Sagittarius arm, can be excluded at a 99% level of confidence. A marginal peak detected at this distance may be associated with stellar streams in the star-forming regions, but it is too narrow to be associated with a major arm feature. Conclusions. A comparison with test-particle simulations in a fixed galactic potential with an imposed spiral pattern shows the best agreement with a two-armed spiral potential having the Scutum–Crux arm as the next major inner arm. A relative radial forcing dFr ≈ 1.5% and a pattern speed in the range of 20–30 km s−1 kpc−1 yield the best fit. The lack of a positive velocity perturbation in the region around the Sagittarius arm excludes it from being a major arm. Thus, the main spiral potential of the Galaxy is two-armed, while the Sagittarius arm is an inter-arm feature with only a small mass perturbation associated with it.


2019 ◽  
Vol 489 (4) ◽  
pp. 5165-5180 ◽  
Author(s):  
Giorgi Kokaia ◽  
Melvyn B Davies

ABSTRACTGiant molecular clouds (GMCs) are believed to affect the biospheres of planets as their host star passes through them. We simulate the trajectories of stars and GMCs in the Galaxy and determine how often stars pass through GMCs. We find a strong decreasing dependence with Galactocentric radius, and with the velocity perpendicular to the Galactic plane, V$\mathrm{ z}$. The XY-component of the kinematic heating of stars was shown to not affect the GMC hit rate, unlike the Z-dependence (V$\mathrm{ z}$) implies that stars hit fewer GMCs as they age. GMCs are locations of star formation, therefore we also determine how often stars pass near supernovae. For the supernovae the decrease with V$\mathrm{ z}$ is steeper as how fast the star passes through the GMC determines the probability of a supernova encounter. We then integrate a set of Sun-like trajectories to see the implications for the Sun. We find that the Sun hits 1.6 ± 1.3 GMCs per Gyr which results in 1.5 ± 1.1 or (with correction for clustering) 0.8 ± 0.6 supernova closer than 10 pc per Gyr. The different the supernova frequencies are from whether one considers multiple supernovae per GMC crossing (few Myr) as separate events. We then discuss the effect of the GMC hits on the Oort cloud, and the Earth’s climate due to accretion, we also discuss the records of distant supernova. Finally, we determine Galactic Habitable Zone using our model. For the thin disc, we find it to lie between 5.8 and 8.7 kpc and for the thick disc to lie between 4.5 and 7.7 kpc.


1996 ◽  
Vol 171 ◽  
pp. 369-369
Author(s):  
W.J. Duschl ◽  
S. von Linden ◽  
T. Walter ◽  
M. Wittkowski

Gas and dust in the inner region of the Galaxy are distributed in a flat, disklike structure. We model the dynamics of this material in the framework of an accretion disk approach, and thus determine the efficiency of the radial transport of mass and angular momentum in the inner ∼ 200 pc of the Galactic Plane. Moreover, this allows us to establish the location (coordinates: galactic longitude l and depth normal to the celestial sphere) of molecular clouds from the observed positions (l) and radial velocities (currently, we neglect details of the vertical structure). Ultimately this will yield a map of the distribution of molecular clouds about Sgr A∗.


1988 ◽  
Vol 126 ◽  
pp. 529-530
Author(s):  
V. Straižys ◽  
R. Janulis

The interstellar reddening of globular clusters of the Galaxy is still an important unresolved problem, especially for metal-rich objects that are found usually at low galactic latitudes in the general direction of the galactic center. Their color excesses are needed in order to correct their color-magnitude diagrams and to determine their intrinsic integrated color indices. For this we need some method which is not related to measures of the cluster stars. One such method is to use foreground field stars in the direction of the globular cluster to measure the interstellar reddening. Because most of the globular clusters lie outside the galactic plane, we need information about the reddening in all the layer of absorbing dust in different directions. This information can be obtained by investigating stars which are at different distances from the Sun up to the edge of the absorbing dust layer. On the other hand, these stars should be as close as possible to the position of the globular cluster to avoid possible variations in the interstellar reddening in the area of the cluster.


2016 ◽  
Vol 11 (S322) ◽  
pp. 170-171
Author(s):  
Volker Tolls ◽  
Howard A. Smith ◽  

AbstractWe present a snapshot of our ongoing investigation of molecular clouds in Clump 2 located in the Galactic Bar region at a projected distance of ~400pc from the Galactic Center. We show that the analysis of the Clump 2 molecular clouds is complicated because of many fore- and background clouds in the line of sight. Of all clouds, IGGC 22 is the most interesting one, showing very high dust column densities, significant high-J CO emission, and, potentially harbors star formations as eluded to by the detection of [OIII] emission.


Sign in / Sign up

Export Citation Format

Share Document