scholarly journals Kinematical Structure of the Local Interstellar Medium

1997 ◽  
Vol 166 ◽  
pp. 195-198
Author(s):  
R. Génova ◽  
J. E. Beckman ◽  
J. Rodríguez Álamo

AbstractObservations of interstellar Na I in the spectra of 93 stars within 315 pc from the Sun show that it lies in a tunnel of gas moving away from Scorpio-Centaurus and is surrounded by gas moving toward the Galactic center.Gas approaches the Sun from Scorpio-Centaurus expanding from (r, l, b)=(160 pc, 313°7, +28°2) with LSR velocity 15.3 km s−1. The radius of this shell is 153 pc.We identify these clouds:D: velocity vector (υd, ld, bd)=(+7.2 km s−1, 305°1, −13°5), above and below the Galactic plane (GP) in the range of Galactic longitudes 357°–55°.C: velocity vector (υc, lc, bc)=(+11.5 km s−1, 349°0, −35°2), above and below the GP in the range 30°≤l≤110°.M: velocity vector (υm, lm, bm)=(+21.9 km s−1, 34°2, +1°5), above and below the GP in the range 100°≤l≤130°.P: velocity vector (υp, lp, bp)=(+13.8 km s−1, 244°9, +5°4), above and below the GP from l~120° to the limit of our data at l~210°.E: velocity vector (υe, le, be)=(+16.8 km s−1, 208°4, +6°2) in the range 160°≤l≤185° and −10°≤b≤–35°.A: velocity vector (υa, la, ba)=(+12.9 km s−1, 73°6, −5°6) towards the Galactic anti-center, below the GP.I: velocity vector (υi, li, bi)=(+37.7 km s−1, 132°8, −64°3) towards the Galactic anti-center, above the GP.

1997 ◽  
Vol 484 (2) ◽  
pp. 761-778 ◽  
Author(s):  
Ricardo Genova ◽  
John E. Beckman ◽  
Stuart Bowyer ◽  
Thomas Spicer

1984 ◽  
Vol 81 ◽  
pp. 64-66 ◽  
Author(s):  
F. Bruhweiler ◽  
W. Oegerle ◽  
E. Weiler ◽  
R. Stencel ◽  
Y. Kondo

AbstractWe have combined Copernicus and IUE observations of 5 stars within 50 pc of the Sun to study the ionization of magnesium in the local interstellar medium (LISM). The high resolution Copernicus spectrometer was used to detect interstellar Mg I 2852 in the spectra of α Gru, α Eri, and α Lyr, while placing upper limits on Mg I in the spectra of α CMa and α PsA. Observations of Mg II 2795, 2802 for these stars were also obtained with IUE and Copernicus. The column densities of Mg I and Mg II are used to place constraints on the temperature of the LISM.


1996 ◽  
Vol 152 ◽  
pp. 261-268 ◽  
Author(s):  
Fredrick C. Bruhweiler

We are finally on the threshold of obtaining a coherent morphological and physical picture for the local interstellar medium (LISM), especially the region within 300 pc of the Sun. The EUVE is playing a special role in revealing this picture. This instrument can provide direct measurements of the the radiation field that photoionizes both hydrogen and helium. It also can yield direct measurements of the column densities of hydrogen, but especially He I and He II toward nearby white dwarfs. These observations suggest that the ionization in the Local Cloud, the cloud in which the Sun is embedded, is not in equilibrium, but in a recombination phase. Heuristic calculations imply that the the present ionization is due to the passage of shocks, at times greater than 3 × 106 years ago. The origin of these shocks are probably linked to the supernova which was responsible for the expanding nebular complex of clouds know as the Loop I supernova remnant, of which the Local Cloud is a part, extreme- UV radiation field, that which ionizes both hydrogen and helium in the LISM. Of the ISM within 300 pc, the volume appears to be predominantly filled by hot (106 K) coronal gas. This gas is laced with six largescale shell structures with diameters ~100−150 pc including the long-recognized radio loops, Loop I−IV, as well as the Orion-Eridanus and Gum Nebulae are identified. An idea that has evolved in the literature for over two decades is that the kinematically-linked OB associations representing Gould’s Belt, plus the gas and dust of Lindblad’s Ring, require that previous supernova activity and stellar winds carved out a 400–600 pc diameter cavity some 3 to 6 × 107 yr ago. This activity produced a pre-existing low density region, into which the present young loop structures have expanded. The outer boundaries of the identified expanding loop structures, inside this preexisting cavity, delineate the periphery of the the mis-named “local interstellar bubble.” Thus, this picture naturally explains some of the problems often associated with the presence of this low density region exterior to Loop I.


2018 ◽  
Vol 619 ◽  
pp. A50 ◽  
Author(s):  
P. Grosbøl ◽  
G. Carraro

Context. The location of young sources in the Galaxy suggests a four-armed spiral structure, whereas tangential points of spiral arms observed in the integrated light at infrared and radio wavelengths indicate that only two arms are massive. Aims. Variable extinction in the Galactic plane and high light-to-mass ratios of young sources make it difficult to judge the total mass associated with the arms outlined by such tracers. The current objective is to estimate the mass associated with the Sagittarius arm by means of the kinematics of the stars across it. Methods. Spectra of 1726 candidate B- and A-type stars within 3◦ of the Galactic center (GC) were obtained with the FLAMES instrument at the VLT with a resolution of ≈6000 in the spectral range of 396–457 nm. Radial velocities were derived by least-squares fits of the spectra to synthetic ones. The final sample was limited to 1507 stars with either Gaia DR2 parallaxes or main-sequence B-type stars having reliable spectroscopic distances. Results. The solar peculiar motion in the direction of the GC relative to the local standard of rest (LSR) was estimated to U⊙ = 10.7 ± 1.3kms−1. The variation in the median radial velocity relative to the LSR as a function of distance from the sun shows a gradual increase from slightly negative values near the sun to almost 5 km s−1 at a distance of around 4 kpc. A sinusoidal function with an amplitude of 3.4 ± 1.3kms−1 and a maximum at 4.0 ± 0.6 kpc inside the sun is the best fit to the data. A positive median radial velocity relative to the LSR around 1.8 kpc, the expected distance to the Sagittarius arm, can be excluded at a 99% level of confidence. A marginal peak detected at this distance may be associated with stellar streams in the star-forming regions, but it is too narrow to be associated with a major arm feature. Conclusions. A comparison with test-particle simulations in a fixed galactic potential with an imposed spiral pattern shows the best agreement with a two-armed spiral potential having the Scutum–Crux arm as the next major inner arm. A relative radial forcing dFr ≈ 1.5% and a pattern speed in the range of 20–30 km s−1 kpc−1 yield the best fit. The lack of a positive velocity perturbation in the region around the Sagittarius arm excludes it from being a major arm. Thus, the main spiral potential of the Galaxy is two-armed, while the Sagittarius arm is an inter-arm feature with only a small mass perturbation associated with it.


2019 ◽  
Vol 91 (2) ◽  
pp. 272-280 ◽  
Author(s):  
Wojciech Konior ◽  
Romana Ratkiewicz ◽  
Jan Kotlarz

Purpose This paper aims to review the current knowledge about the neutral component of the local interstellar medium (LISM), which due to the resonant charge exchange, photoionization and electron impact ionization processes has a profound impact on the heliosphere structure. Design/methodology/approach This work is based on the heliospheric literature review. Findings The summary of four major effects of neutral hydrogen atoms penetrating solar wind (SW), i.e. the disappearance of the complicated flow structure; the emergence of “hydrogen wall” in front of the heliopause (HP); decreasing distance of termination shock (TS), HP and bow shock (BS) layer from the Sun; and recently discovered by the Interstellar Boundary Explorer mission, a region of enhanced energetic neutral atom (ENA) emission seen in all sky maps as a ribbon. Practical implications In the context of constantly developing space technologies in aerospace engineering and prospective deep space missions, there is a need of general reviews about the interstellar space surroundings of the Sun and gathering the knowledge to help in theoretical, numerical and experimental investigations such as the optimization of the scientific equipment and spacecraft structure to work in specific conditions. Originality/value The survey encapsulate basic and relevant processes playing an important role in the physics of the nearest surroundings of the Sun and the latest results of numerical and experimental investigations focused on the neutral LISM component and its influence on the heliosphere, which is strongly desired in future works. Until now, not many of such reviews have been done.


2001 ◽  
Vol 182 ◽  
pp. 171-174
Author(s):  
N.D. Ramesh Bhat ◽  
Yashwant Gupta ◽  
A. Pramesh Rao ◽  
P.B. Preethi

AbstractPulsar scintillation measurements from the Ooty Radio Telescope (ORT) are used to investigate the distribution of scattering in the Local Interstellar Medium (LISM; region of ≲ 1 kpc of the Sun), specifically the region in and around the Local Bubble. A 3-component model, where the Solar neighborhood is surrounded by a shell of enhanced plasma turbulence, is proposed for the LISM. Further, the Ooty data, along with those from Parkes and other telescopes are used for investigating the distribution of scattering towards the nearby Loop I Superbubble.


1983 ◽  
Vol 5 (2) ◽  
pp. 224-227 ◽  
Author(s):  
William L. Peters ◽  
Frank N. Bash

We present the initial results of a statistical comparison of CO emission and H I self-absorption in the galactic plane at large distances from the Sun. Evidence for self-absorption by cold atomic hydrogen (Ts < 60 K) over angular scales of 3 ´-20´ was reported by Baker and Burton (1979). They suggested that this hydrogen was associated with the molecular clouds of the ‘molecular ring’ located between 4 and 8 kpc from the galactic center (Burton and Gordon 1978). Burton, Lizst, and Baker (1978) did find a correspondence between CO emission and H I self-absorption; however, their observations were not extensive enough to prove that the correspondence was statistically significant or to test their prediction that all instances of H I self-absorption are accompanied by CO emission and thus associated with molecular clouds.


1984 ◽  
Vol 81 ◽  
pp. 3-23 ◽  
Author(s):  
Jean-Loup Bertaux

AbstractThe Sun is moving in respect to the nearby stars with a velocity of 20 km.s-1 in the direction of the Apex, α = 271° and δ = 30° (celestial coordinates). As the lights of a car illuminate the water droplets when driving in the fog, the Sun illuminates the Hydrogen and helium atoms of the interstellar medium which it travels through. As a result, the sun and the whole solar system are imbedded in a glow of the resonance lines of hydrogen (H Lyman α ; 121.6 nm) and helium (58.4 nm), which have been studied by several space instruments in the last 14 years.From the intensity distribution of the glow in the solar system, one can derive the density of H and He in the L1SM and the direction of the relative motion between the sun and the LISM in the very vicinity of the sun. The velocity module Vw and the LISM temperature T are more adequately found from a measurement of the Lyman α line shape, which is an image of the velocity distribution of H atoms.A summary of results will be presented, together with a discussion of the methods of interpretation and their difficulties. The vector is found to be 20 ± 1 km.s-1 in the direction α = 254 ± 3°, δ = - 17 ± 3°, quite different from the Apex direction. This means that the LISM is moving also in respect to the local frame of reference giving rise to the socalled Interstellar Wind. This wind blows in the galactic plane at 16 km.s-1, in the direction , significantly different from the direction found by interstellar absorption lines on stars within ≃ 100 pc, pointing to a local significance of this flow. The temperature of the LISM is T = 8,000 ± 1,000 K, the density n (H) ≃ 0.04 to 0.06 cm-3, and the helium density n (He) ≃ 0.015 to 0.020. The high helium/hydrogen ratio, in respect to the cosmological ratio, would imply that a substantial part of the hydrogen is ionized. Temperature, density and degree of ionization of the LISM are suggesting that the sun is now in an intermediate phase of the interstellar medium, at the Interface between a hot and tenuous gas, and a dense and cold cloud of gas.


1971 ◽  
Vol 2 ◽  
pp. 378-390
Author(s):  
B. E. Turner

AbstractOH is at present the most ubiquitous molecule known in the interstellar medium. It is primarily associated with galactic continuum sources, both thermal and nonthermal. The fraction of all sources showing OH decreases monotonically with galactic longitude away from the Galactic Center region. However, neither the projected density of OH nor the abundance relative to hydrogen or other molecules seems to depend on location within the galactic plane. OH also occurs in many dark dust clouds, where its density is typically 10−5—10−4 cm−3 and its abundance relative to hydrogen is very high. OH is not found in the heavily reddened stellar clusters of Reddish, in Wolf Rayet stars, in planetary nebulae, or in globules. Recent surveys have indicated that OH both in emission and in absorption, is highly correlated with H2CO in direction and in velocity. OH emission, but not absorption, is also highly correlated with anomalous H2O emission. These relationships are important in deciding between various processes for interstellar molecule formation. On present information, it appears that more than one such process is operative in different regions of the interstellar medium.


Sign in / Sign up

Export Citation Format

Share Document